CSCI2467: Systems Programming Concepts

Slideset 12: Stack attacks and defenses
Source: CS:APP section 3.10, Bryant & O’Hallaron

Course Instructors: Course Assistants:
Matthew Toups Saroj Duwal
Caitlin Boyce David McDonald
Spring 2020

&

THE UNIVERSITY of
NEW ORLEANS

Our last lab assignment

o Lab4 (attacklab) is out
Due: Monday, April 20, 11:59pm

- like before, you will defeat “phases” of an unknown, unique
binary program

- unlike before, no “explosion” penalty

Class updates
[Ye)

Attacklab handin!
Yes you must hand in to Autolab

@ You must hand in a commented, plain-text version of your
solutions (eg. phasel.txt)

Use autolab submit button
After you submit, your score will show up on scoreboard
Please submit your new solution every time you solve a phase

Comments must explain how and why your solution works!

Convince us you know! Otherwise we will not award points

Class updates
oe

@ Class updates
@ Memory layout

© Buffer Overflow
@ Vulnerability
@ History

@ Protection
@ Bug-free code?
@ ASLR and NX
@ Stack canaries

@ Arms race!
@ Return-oriented programming (ROP)

© Attacklab (lab4)

Memory layout
©0000

x86-64 Procedure Summary

-
m Important Points
= Stack is the right data structure for procedure call /
return Caller
= If P calls Q, then Q returns before P Frame Arguments
m Recursion (& mutual recursion) handled by 7+
normal calling conventions \ [Return Addr
® Can safely store values in local stack frame and in (Opﬁﬁoﬁﬁ Old %rbp
callee-saved registers Saved
® Put function arguments at top of stack Registers
® Result returnin $rax Lo-;al
m Pointers are addresses of values Variables
® On stack or global
Argument
Build
Srsp—

Memory layout
0000

not drawn to scale

x86-64 Linux Memory Layout

00007FFFFFFFFFFF

Stack
m Stack 1

= Runtime stack (8MB limit)
= E.g., local variables
m Heap
= Dynamically allocated as needed
= When call malloc(), calloc(), new()

8MB

m Data Shared
. Libraries
= Statically allocated data
= E.g. globalvars, static vars, string constants
m Text / Shared Libraries t
= Executable machine instructions Heap
= Read-only Data
Text
Hex Address 400000
000000

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory layout
00800

not drawn to scale

Memory Allocation Example

Stack

char big_array[lL<<24]; /* 16 MB */ 1

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main ()

{ Shared
void *pl, *p2, *p3, *p4; Libraries
int local = 0;
pl = malloc(lL << 28); /* 256 MB */
p2 = malloc(lL << 8); /* 256 B */ 4
p3 = malloc(lL << 32); /* 4 GB */
p4 = malloc(lL << 8); /* 256 B */ AT

/* Some print statements ... */ Data

} Text

Where does everything go?

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Memory layout
00080

not drawn to scale

x86-64 Example Addresses oooo7r

Stack
address range ~2 4
Heap
local 0x00007ffed4d3be87c ¥
pl 0x00007£7262a1e010
P3 0x00007£7162a1d010
p4 0x000000008359d120
p2 0x000000008359d010
big_array 0x0000000080601060
huge_array 0x0000000000601060
main () 0x000000000040060c t
useless () 0x0000000000400590
Heap
Data
Text
000000

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Memory layout
0000e

@ Class updates
@ Memory layout

© Buffer Overflow
@ Vulnerability
@ History
@ Protection
@ Bug-free code?
@ ASLR and NX
@ Stack canaries
@ Arms race!
@ Return-oriented programming (ROP)

© Attacklab (lab4)

Buffer Overflow
©00000000000

Memory Referencing Bug: an example

typedef struct {
int a[2];
double d;

} struct t;

double fun(int i) {
volatile struct t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

See:
/home/CSCI2467/1labs/misc/structmem/structmem.c

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int i) {
volatile struct_t s;
s.d = 3.14;

Buffer Overflow

900000000000

Memory Referencing Bug: an example

typedef struct { fun (0) = 3.14
int a[2]; fun (1) -> 3.14
CEE0 fun(2) = 3.1399998664856
JEE fun(3) = 2.00000061035156
fun(4) = 3.14
fun(6) = Segmentation fault
Explanation:
Critical State 6
? 5
? 4
a7 d4 3 Location accessed by
fun (i)
a3 . do 2
struct t
- all] 1
al0] 0

Buffer Overflow
000000000000

Recall floats

m Single precision: 32 bits

s |exp frac

1 8-bits 23-bits

m Double precision: 64 bits

s |exp frac

1 11-bits 52-bits

Buffer Overflow
008000000000

Buffer overflows: big security implications

What we just saw is generally called a buffer overflow
e Why a big deal?

- For decades, has been the #1 technical cause of security
vulnerabilities

(#1 overall cause is social engineering)

@ Most common form:

- unchecked lengths on string inputs

- particularly for bounded character arrays on the stack
(sometimes referred to as “stack smashing”)

Buffer Overflow
000800000000

String library code

m Implementation of Unix function gets ()

/* Get string from stdin */
char *gets(char *dest)
{
int ¢ = getchar();
char *p = dest;
while (c '= EOF && ¢ '= '\n') {
*p++ = c;
c = getchar();
}
*p = '\0';
return dest;
}

= No way to specify limit on number of characters to read
m Similar problems with other library functions

® strcpy, strcat: Copy strings of arbitrary length
®* scanf, fscanf, sscanf, when given $s conversion specification

Buffer Overflow
000080000000

gets has a very bad reputation

Linux Programmer's Manua

gets - get a string from standard input (DEPRECATED)

SYNOPSIS
#include <stdio.h>

char *gets(char *s);

DESCRIPTION
Never use this function.
gets() reads a Lline from stdin into the buffer pointed to by s until
either a terminating newline or EOF, which it replaces with a null byte

("\@'). No check for buffer overrun is performed (see BUGS below).

VALUE

gets() returns s on success, and NULL on error or when end of file
occurs while no characters have been read. However, given the lack of
buffer overrun checking, there can be no guarantees that the function
will even return.

ATTRIBUTES
For an explanation of the terms used 1in this section, see
attributes(7).

Interface | Attribute Value

Buffer Overflow
000008000000

Vulerable buffer code

/* Echo Line */
void echo()

{

char buf[4]; /* Way too small! */ €btw, how blg
gets (buf) ; ’. .
puts (buf) ; is big enough?

}

void call echo() {
echo() ;
}

unix>. /bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123

unix>./bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault

Buffer Overflow

00000 0000

r overflow disassembly

echo:
00000000004006cf <echo>:
4006cf: 48 83 ec 18 sub $0x18,%rsp
4006d3: 48 89 e7 mov %rsp,%rdi
4006d6: e8 a5 ff ff ff callg 400680 <gets>
4006db: 48 89 e7 mov %$rsp, %rdi
4006de: e8 3d fe ff ff callg 400520 <puts@plt>
4006e3: 48 83 c4 18 add $0x18,%rsp
4006e7: c3 retq
call_echo:
4006e8: 48 83 ec 08 sub $0x8,%rsp
4006ec: b8 00 00 00 00 mov $0x0, seax
4006f1: e8 d9 ff ff ff callg 4006cf <echo>
4006f6: 48 83 c4 08 add $0x8,%rsp
4006fa: c3 retq

Buffer Overflow
000000080000

Buffer overflow stack

Before call to gets

Stack Frame
forcall_echo

/* Echo Line */

Return Address void echo ()
(8 bytes) {
char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;
20 bytes unused }

buf *— %rsp

(31lr21]r123fro3

echo:
subqg $24, %rsp
movqg %rsp, %rdi
call gets

Buffer Overflow
000000008000

r overflow stack: example

Before call to gets

void echo() echo:

Stack Frame { subg $24, %rsp
forcall_§0h° char buf[4]; movq $rsp, $rdi

gets (buf) ; call gets
00]00]|00]00 }
00]40] 06| £6

call_echo:

20 bytes unused 4006f1: callg 4006cf <echo>

4006f6: add $0x8,%rsp
(31fr21]r11f101] bus ~—szsp

After call to gets

echo:
subqg $24, %rsp
movqg %rsp, %rdi
call gets

void echo()

{

Stack Frame
forcall_echo char buf[4];

gets (buf) ;

Buffer Overflow

000000000800

r overflow stack: example

After call to gets

Stack Frame

o alfl, e register_tm_clones:

400600: mov %rsp, $rbp
oolooloo]|o00 400603: mov %rax,%rdx
400606: shr $0x3f, %rdx
40060a: add $rdx, $rax
40060d: sar $rax

00]40]06]00
33]32]31]30

39138137136 400610: jne 400614
3513413332 400612: pop $rbp
31[30]39]38 400613: retq

37]36|35]|34
33132]31]|30|buf «— %rsp

“Returns” to unrelated code
Lots of things happen, without modifying critical state
Eventually executes retq back tomain

Buffer Overflow
0000000000

Code Injection Attacks

Stack after call to gets ()

gets (buf) ;

return ...;

char buf[64];

’

void P(){
Q) return
cee <+—— address
} A
int Q() {

data written
by gets ()

pad

exploit
code

N

> P stack frame

> Q stack frame

J

Input string contains byte representation of executable code
Overwrite return address A with address of buffer B
When Q executes ret, will jump to exploit code

Buffer Overflow
000000000008

Exploits based on buffer overflows

m Buffer overflow bugs can allow remote machines to execute
arbitrary code on victim machines
m Distressingly common in real progams
= Programmers keep making the same mistakes ®
= Recent measures make these attacks much more difficult
m Examples across the decades
= Qriginal “Internet worm” (1988)
= “IM wars” (1999)
= Twilight hack on Wii (2000s)
= _..and many, many more
m You will learn some of the tricks in attacklab
= Hopefully to convince you to never leave such holes in your programs!!

Buffer Overflow
€00000000000000

Example: “Morris worm” (1988)

@ First Internet-based malware
(spread via network using buffer overflow exploits)

Used several vulnerabilities to spread
gets() called in some UNIX services (fingerd)
these services take input from users
. and with certain crafted input, would execute root shell
Once the worm takes over a system, it scans the network for
other computers to attack
Morris worm took over an estimated 6000 computers
(10% of the internet at the time!)
Described in June 1989 article in Communications of the ACM

Buffer Overflow
0@0000000000000

http://dl.acm.org/citation.cfm?id=66095

rris worm” gets widely studied (1989)

THE INTERNET WORM

Crisis and Aftermath

Last November the Internet was infected with a worm program that
eventually spread to thousar:ds of machines, disrupting normal
activities and Internet connectivity for many days. The following
article examines just how this worm operated.

Eugene H. Spafford

On the evening of November 2, 1988 the Internet came
under attack from within. Sometime after 5 p.m.," a
program was execuled on one or more hosts connected
to the Internet. Tha' program collected host, network,
and user informatioa, then used that information to
break into other machines using flaws present in those
systems’ software. After breaking in, the program
would replicate itse.f and the replica would attempt to
infect other systems in the same manner.

Although the program would only infect Sun Micro-
systems’ Sun 3 systems and VAX® computers running
variants of 4 BSD UNIX,*® the program spread quickly,

was that the program was somehow tampering wit!
system resources in a way that could not be readily
detected—that while a cure was being sought, syste
files were being altered or information destroyed. B
5 a.m. Thursday morning, less than 12 hours after t
program was first discovered on the network, the C
puter Systems Research Group at Berkeley had dev
oped an interim set of steps to halt its spread. This

included a preliminary patch to the sendmail mail

agent. The suggestions were published in mailing li
and on the Usenet, although their spread was ham-
pered by systems disconnecting from the Internet tc

as did the confusion and consternation of system ad. attempt a “quarantine.”
Buffer Overflow
008000000000000

“Morris worm” goes down in history

CC BY-NC: Tobasco da Gama

Overflow

0000000000

https://flic.kr/p/5JqR34

Morris worm consequences

Computer Intruder Is Put on Probation And Fined $10,000

By JOHN MARKOFF, Special to The New York Times
Published: May 5, 1990

SYRACUSE, May 4— Saying the punishment of prison did not fit the
crime, a Federal judge today placed a 24-year-old computer science student
on three years' probation for intentionally disrupting a nationwide computer
network. The student, Robert Tappan Morris, was also fined $10,000 and
ordered to perform 400 hours of community service.

The sentencing of Mr. Morris had been awaited with great interest by
computer security experts and those who try to evade them.

The case, which began when Mr. Morris wrote a program that copied itself

wildly in thousands of separate machines in November 1988, has become a

symbol of the vulnerabilities of the computer networks that serve as the nation's highways in the age
of instant information.

Legal experts said the Government's decision to prosecute Mr. Morris, after an eight-month debate
in the Justice Department, sent a strong message that tampering with computers, even when not
intentionally destructive, was not acceptable. When Mr. Morris was found guilty last January, he
became the first person convicted by a jury under the Federal Computer Fraud and Abuse Act of
1986.

Buffer Overflow

https://pdos.csail.mit.edu/~rtm/

WOorm vs. Virus

@ Worm — a program that:
- can run by itself

- can propagate a full working version of itself to other
computers

@ Virus — code that:
- adds itself to other programs

- does not run independently

@ Both are designed to spread on their own

Buffer Overflow
000000000000000

1990s: the word gets out

@ 1995: “How to write buffer overflows” published
@ 1996: First complete, public explanation of buffer overflows:
“Smashing The Stack For Fun And Profit”

.00 Phrack 49 Oo.
Volume Seven, Issue Forty-Nine
File 14 of 18

BugTrag, r00t, and Underground.Org
bring you

X000
Smashing The Stack For Fun And Profit
FEEEEIEEEEIEEE RN ERT RS R EE TR E R Rt e

by Aleph One
alephl@underground.aorg

“smash the stack™ [C programming]l n. On many C implementations
1t is possible to corrupt the execution stack by writing past

the end of an array declared auto in a routine. Code that does
this 1s sald to smash the stack, and can cause return from the
routine to jump to a random address., This can produce some of

Buffer Overflow
000000800000000

http://insecure.org/stf/mudge_buffer_overflow_tutorial.html
http://phrack.org/issues/49/14.html#article

Later worms
Buffer overflow a common tactic for malware

2001: Code Red worm

buffer overflow in Microsoft 1S
2003: SQL Slammer

buffer overflow MS SQL server

hit 75,000 victims within 10 minutes
376 bytes

Worms are not the only (in)famous uses of buffer overflows...

Buffer Overflow
000000080000000

IM wars

m July, 1999
= Microsoft launches MSN Messenger (instant messaging system).

= Messenger clients can access popular AOL Instant Messaging Service
(AIM) servers

Buffer Overflow

0000000000000 0

IM war hits NY Times page Al
July 24, 1999
In Cyberspace,

Ruwvals Skirmish
Over Messaging

By SAUL HANSELL

America Online closed its on-line
service yesterday to new software
from two of its fiercest rivals, Micro-
soft and Yahoo, that had been de-
signed to tap into one of America
Online’s most popular features: in-
stant messages.

On Thursday, both the Microsoft
Corporation. and Yahoo introduced

Buffer Overflow
000000000800000

http://www.nytimes.com/1999/07/24/business/in-cyberspace-rivals-skirmish-over-messaging.html

IM wars: behind the scenes

m August 1999

= Mpysteriously, Messenger clients can no longer access AIM servers

= Microsoft and AOL begin the IM war:
= AOL changes server to disallow Messenger clients
= Microsoft makes changes to clients to defeat AOL changes
= At least 13 such skirmishes

= What was really happening?
= AOL had discovered a buffer overflow bug in their own AIM clients

= They exploited it to detect and block Microsoft: the exploit code
returned a 4-byte signature (the bytes at some location in the AIM
client) to server

= When Microsoft changed code to match signature, AOL changed
signature location

Buffer Overflow
0000000000 80000

IM wars

From: Phil Bucking <philbucking@yahoo.com>
Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you
might find interesting because you are an Internet security expert with
experience in this area. I have also tried to contact AOL but received
no response.

I am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.

It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help in
its efforts to block MS Instant Messenger.

Since you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' security.

It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help in

00000000000 e000

Twilight hack (2008)?

@ First method of running “homebrew” apps on Nintendo Wii

@ Using a special saved-game file with a custom name for Epona
(Link's horse) containg exploit code (code injection)

;,TWIIJéht Princess

2h'c‘cp ://www.wiibrew.org/wiki/Twilight_Hack

Buffer Overflow
000000000000800

http://www.wiibrew.org/wiki/Twilight_Hack

iPhone jailbreaks (2007-present)

Apple locks down iPods / iPhones / etc

- Why? Restrict apps to iTunes store, lock devices to carriers,
prevent malware

Device owners try to circumvent “jail”

- Why? Run other apps, evade censorship, customize OS,
unlock device, etc

ede e

Buffer Overflow

0000000000000 e0

iPhone jailbreaks®

How? Many techniques

Buffer overruns and integer overflows are common
Apple's response? Issue OS update to prevent jailbreak
(patch vulnerabilities)

So new vulnerabilities are found, new jailbreak released

Apple plugs critical iPhone jailbreak
holes

Reuters Staff 4 MIN

Apple today patched the two vulnerabilities used to jailbreak Apple’s newest iOS 4 operating
system, bugs that security researchers warned could be used to hijack iPhones , iPod Touches

oriPads .

The patches came just 10 days after a group published a site that automatically exploited and

then jailbroke any iOS 4 device that used the mobile Safari browser to surf to jailbreakme.com

Also last week, other researchers confirmed that the first exploit of the pair leveraged a flaw in
Safari’s parsing of fonts in PDF documents to compromise the browser. A second

vulnerability was exploited to break out of the isolating “sandbox” and gain full, or “root,”

Buffer Overflow

0000000000000 0e

https://www.theiphonewiki.com/wiki/Jailbreak_Exploits

@ Class updates
@ Memory layout

© Buffer Overflow
@ Vulnerability
@ History
@ Protection
@ Bug-free code?
@ ASLR and NX
@ Stack canaries
@ Arms race!
@ Return-oriented programming (ROP)

© Attacklab (lab4)

Buffer Overflow
€00000000

Defense 1: avoid overflow vulerabilities when writing

programs

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
fgets (buf, 4, stdin);
puts (buf) ;

m For example, use library routines that limit string lengths
= fgets instead of gets
® strncpy instead of strcpy
® Don’t use scanf with $s conversion specification
= Use fgets to read the string
= Oruse $ns where n s a suitable integer

Buffer Overflow
€00000000

Defense 2: System-level protections

Randomized stack offsets

m Randomized stack offsets Stack base
= At start of program, allocate
random amount of space on stack
. . Random
= Shifts stack addresses for entire allocation
program
= Makes it difficult for hacker to
predict beginning of inserted main
code Application
= E.g.:5 executions of memory Code
allocation code
local Ox7ffedd3be87c Ox7fff75a4f9fc Ox7ffeadb7c80c Ox7ffeaea2fdac Ox7ffcd452017c B?
= Stack repositioned each time pad
program executes Sk
B? — code

Buffer Overflow
0000000

Defense 2: System-level protections

Non-executable stack

Stack after call to gets ()
m Nonexecutable code N

segments

" |n traditional x86, can mark
region of memory as either
“read-only” or “writeable” B

> P stack frame

= Can execute anything <
readable data written pad
= X86-64 added explicit by gets ()

“execute” permission exploit } Q stack frame
code

= Stack marked as non- B
executable

Any attempt to execute this code will fail

Buffer Overflow
008000000

Canary in a coal mine

Source: U.S. State Department/Doug Thompson

Buffer Overflow
000800000

Defense 3: Stack Canaries

m Idea
= Place special value (“canary”) on stack just beyond buffer
= Check for corruption before exiting function
m GCC Implementation
= -fstack-protector
= Now the default (disabled earlier)

unix>. /bufdemo-sp
Type a string:0123456
0123456

unix>. /bufdemo-sp
Type a string:01234567
*** stack smashing detected ***

Buffer Overflow
000000000

Defense 3: Canary example

Disassembly shows additional instructions in every function

echo:

40072f: sub $0x18, %rsp

400733: mov %$£fs:0x28, %rax
40073c: mov %$rax,0x8 (%$rsp)
400741: xor %eax, %eax

400743: mov %rsp,%rdi

400746: callg 4006e0 <gets>
40074b: mov %rsp,%rdi

40074e: callg 400570 <puts@plt>
400753: mov 0x8 ($rsp) , $rax
400758: xor %$fs:0x28, %rax
400761: Jje 400768 <echo+0x39>
400763: callg 400580 <_ stack_chk fail@plt>
400768: add $0x18, %rsp

40076c: retqg

Buffer Overflow
000000000

Defense 3: Setting up Canary

Placing canary value onto stack

Before call to gets

/* Echo Line */
Stack Frame void echo ()
forcall_echo {
char buf[4]; /* Way too small! */
gets (buf) ;
Return Address puts (buf) ;
(8 bytes) }
Canary
(8 bytes)
(31]r21]r21]101f bus ~—srsp

echo:
movq %fs:40, %rax # Get canary
movqg %rax, 8(%rsp) # Place on stack
xorl %eax, %eax # Erase canary

Buffer Overflow
000000000

Defense 3: Checking Canary

Compare value on stack to original immediately before returning

After call to gets
/* Echo Line */
Stack Frame void echo ()
forcall_echo {
char buf[4]; /* Way too small! */
gets (buf) ;
Return Address puts (buf) ;
(8 bytes) }
Canary Input: 0123456
(8 bytes)
00]36]|35]| 34
33]32]31)30|buf +— %rsp

echo:
movq 8 (%rsp), %rax # Retrieve from stack
xorq %fs:40, %rax # Compare to canary
je .L6 # If same, OK
call __stack_chk_fail # FAIL

.L6:

Brvant and O’Hallaron, Computer Systems: A Py

Buffer Overflow
000000080

Defense 4: Safer programming languages

Some languages offer memory safety

- usually means no pointers or explicit allocate/free
@ Another important feature: type safety

- strict enforcement of data types

- type-checking prevents many common errors

- but usually means no casting, disables other low-level
operations

@ Many classes of errors are preventable but not all!

- errors in program logic are always possible

Buffer Overflow
00000000

@ Class updates
@ Memory layout

© Buffer Overflow
@ Vulnerability
@ History
@ Protection
@ Bug-free code?
@ ASLR and NX
@ Stack canaries
@ Arms race!
@ Return-oriented programming (ROP)

© Attacklab (lab4)

Buffer Overflow
00000

Response: return-oriented programming (ROP) attacks

m Challenge (for hackers)
= Stack randomization makes it hard to predict buffer location
= Marking stack nonexecutable makes it hard to insert binary code

m Alternative Strategy
= Use existing code
= E.g., library code from stdlib
= String together fragments to achieve overall desired outcome
= Does not overcome stack canaries

m Construct program from gadgets
= Sequence of instructions ending in ret
= Encoded by single byte 0xc3
® Code positions fixed from run to run
= Code is executable

Buffer Overflow
00000

ROP: gadget example #1

Use tail end of existing functions

long ab_plus_c
(long a, long b, long c)
{

return a*b + c;

}

00000000004004d0 <ab_plus c>:
4004d0: 48 0f af fe imul %rsi,%rdi
4004d4: | 48 8d 04 17 | lea (%rdi,%rdx,1) ,6%rax
4004d8: | c3 retq

rax € rdi + rdx

Gadget address = 0x4004d4

Buffer Overflow
0000

ROP: gadget example #2
Repurpose opcode bytes within longer instruction

void setval (unsigned *p) {
*p = 3347663060u;

}

/ Encodes movqg %$rax, %$rdi

<setval>:
4004d9: c7 07 d4| 48 89 c7| movl $0xc78948d4, (%rdi)

4004df: retq

\ rdi € rax

Gadget address = 0x4004dc

Buffer Overflow
00000

ROP execution
Stack
Gadget n code IE'

Gadget 2 code

%rsp —_—> .\

Gadget 1 code

‘.
111

El
=]

m Trigger with ret instruction
= Will start executing Gadget 1

m Final ret in each gadget will start next one

Buffer Overflow
00000

Return-oriented programming
...can defeat some defenses but not all

Key observations:

@ randomized stack offsets can make code injection difficult or
impossible

@ non-executable stack can defeat code injection attacks

@ ROP can defeat both of these defenses because it does not
depend on code injection, instead re-uses existing code

@ stack canaries can prevent both code injection attacks and
ROP attacks, because they prevent overwriting the return
address

@ ...but stack canaries are not invincible either!

@ Want to know a way to defeat stack canaries? Check out this
excellent lecture by Prof. James Mickens (via MIT OCW,
graduate level Computer Security course)

Buffer Overflow
0000@

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-858-computer-systems-security-fall-2014/video-lectures/lecture-3-buffer-overflow-exploits-and-defenses/

@ Class updates
@ Memory layout

© Buffer Overflow
@ Vulnerability
@ History
@ Protection
@ Bug-free code?
@ ASLR and NX
@ Stack canaries
@ Arms race!
@ Return-oriented programming (ROP)

© Attacklab (lab4)

Attacklab (lab4)
.

Attacklab

o First 3 phases of lab: code-injection attacks on ctarget

@ Next 2 phases: return-oriented programming attacks on
rtarget

@ 50 points possible (5 phases)

Attacklab (lab4)
.

	Class updates
	Memory layout
	Buffer Overflow
	Vulnerability
	History
	Protection
	Arms race!

	Attacklab (lab4)

