CSCI2467: Systems Programming Concepts

Slideset 11: Machine Level Ill: Procedures
Source: CS:APP Chapter 3, Bryant & O'Hallaron

Course Instructors: Course Assistants:
Matthew Toups Saroj Duwal
Caitlin Boyce David McDonald
Spring 2020

&

THE UNIVERSITY of
NEW ORLEANS

@ Wrapping up processes

@ Procedures

@ Passing control
@ Passing data
@ Managing local data

Wrapping up processes
0000

ECF/IO/MEM/VM
Chapters 6,8,9,10

@ Since midterm, one big concept: processes

Wrapping up processes
0@000

ECF/IO/MEM/VM
Chapters 6,8,9,10

@ Since midterm, one big concept: processes
@ Crucial idea: each process has its own state

Wrapping up processes
0@000

ECF/IO/MEM/VM
Chapters 6,8,9,10

@ Since midterm, one big concept: processes
@ Crucial idea: each process has its own state

@ ...with many important implications:

Wrapping up processes
0@000

ECF/IO/MEM/VM
Chapters 6,8,9,10

Since midterm, one big concept: processes

Crucial idea: each process has its own state

...with many important implications:

control flow (context switching, signals, system calls)

Wrapping up processes
0@000

ECF/IO/MEM/VM
Chapters 6,8,9,10

Since midterm, one big concept: processes

Crucial idea: each process has its own state

...with many important implications:

control flow (context switching, signals, system calls)

CPU state (registers, stack, instruction pointer)

Wrapping up processes
0@000

ECF/IO/MEM/VM
Chapters 6,8,9,10

Since midterm, one big concept: processes

Crucial idea: each process has its own state

...with many important implications:

control flow (context switching, signals, system calls)

CPU state (registers, stack, instruction pointer)

Memory state (address space, protection, caching, £ds)

Wrapping up processes
0@000

ECF/IO/MEM/VM
Chapters 6,8,9,10

Since midterm, one big concept: processes

Crucial idea: each process has its own state

...with many important implications:

control flow (context switching, signals, system calls)

CPU state (registers, stack, instruction pointer)

Memory state (address space, protection, caching, £ds)

All independent, yet sharing one physical system

Wrapping up processes
0@000

ECF/IO/MEM/VM
Chapters 6,8,9,10

Since midterm, one big concept: processes

Crucial idea: each process has its own state

...with many important implications:

control flow (context switching, signals, system calls)

CPU state (registers, stack, instruction pointer)

Memory state (address space, protection, caching, £ds)

All independent, yet sharing one physical system

Thanks to abstractions: processes and virtual memory (VM)

Wrapping up processes
0@000

You have more insight into systems!

...and yes, it will be on the exam

Processes (and associated abstractions) are the key to systems!

... also somewhat notorious

Wrapping up processes
[eYe] Yelo}

You have more insight into systems!

...and yes, it will be on the exam

Processes (and associated abstractions) are the key to systems!

/* You are not expected to
understand this */
But You Will

Context Switching in
UNIX V6 and FreeBSD

Arun Thomas
Systems We Love 2016
arun.thomas@acm.org

@arunthomas

Wrapping up processes
[eYe] Yelo}

You have more insight into systems!

...and yes, it will be on the exam

Processes (and associated abstractions) are the key to systems!

* If the new process paused because it was ‘
* swapped out, set the stack level to the last call

to savu(u ssav). This means that the return

which is executed immediately after the call to aretu
actually returns from the last routine which did

the sawu

L]

L]

L

.

* IYou are not expected to understand this.
f

if(rp->p flag&SSWAP) {
rp->p flag =& ~SSWAP;
aretu(u.u ssav);
}
/l
* The value returned here has many subtle implications.
* See the newproc comments.
o 4
return(l);

Wrapping up processes
[eYe] Yelo}

You have more insight into systems!

...and yes, it will be on the exam

Processes (and associated abstractions) are the key to systems!

swtch() in UNIX V6

* Switch to stack of the new process and set up

* his segmentation registers.

i

retu(rp->p_addr);

sureg();

/*

* If the new process paused because it was
swapped out, set the stack level to the last call
to savu(u_ssav). This means that the return
which is executed immediately after the call to aretu
actually returns from the last routine which did
the savy

* [You are not expected to understand this.
if

(rp->p_flags&SSWAP) {
rp->p_flag =& ~SSWAP;
aretu(u.u_ssav);

/e
* The value returned here has many subtle implications.

* See the newproc comments.

return(1);

Wrapping up processes
[eYe] Yelo}

You have more insight into systems!

...and yes, it will be on the exam

< J Contert Switehing in UNIX vl and freeBSD

:;-;s e //ﬂﬁndeé as “his will not be an the evom"
RS Yo o o expected Save Contexet —>Schedole —> Fastore Lonfex t
< n

\\:‘\’ N |tto urdarstand Hhis. =27 5 ‘g g = harolwa.m
$s é +/ g 2 ’3’1 é:-, I Complicated,

S ~~ 3!

@3V [pniy Hme shanng | 3 S x Wart fo £ron)
N é) 57.3"‘&'"’ relackive], ¢35 5~ 35839 more? MTT oS
Q_ X |/rexpansive Aa.rdﬁzm, s o :‘éé 2 §|Cowrses online {3-

n < |inderachue shell Y U Ve Gambridge
E N - N\ulbtas %‘tgf f éggr@geBS'D N
S0 o etz [F35g, 94 oo Oune)5
A A fime < ¢ & & S| 9
‘f\ = S &4 i437 2fishy repo | £
3 3 =S o Gitwb
TR
v AN
N & 6
v #3&

Wrapping up processes
[eYe] Yelo}

The infamous source code comment

Dr. Summa’s link:
An explainer on Unix's most notorious code comment

Wrapping up processes
[eYeeY To}

https://thenewstack.io/not-expected-understand-explainer

Also, System Performance

e CPU/Memory/disk/network speed gap is central to
performance questions

Wrapping up processes
0000e

Also, System Performance

e CPU/Memory/disk/network speed gap is central to
performance questions

o Huge differences between each, orders of magnitude

Wrapping up processes
0000e

Also, System Performance

e CPU/Memory/disk/network speed gap is central to
performance questions

o Huge differences between each, orders of magnitude

@ Gaps have been growing for a long time, driving hardware and
software design

Wrapping up processes
0000e

Also, System Performance

e CPU/Memory/disk/network speed gap is central to
performance questions

o Huge differences between each, orders of magnitude

@ Gaps have been growing for a long time, driving hardware and
software design

@ Caching is how we've addressed this gap

Wrapping up processes
0000e

Also, System Performance

CPU/Memory/disk/network speed gap is central to
performance questions

Huge differences between each, orders of magnitude

Gaps have been growing for a long time, driving hardware and
software design

Caching is how we've addressed this gap

. which depends on the idea of Locality

Wrapping up processes
0000e

‘ Wrapping up processes

@ Procedures
@ Mechanisms
@ Stack structure

@ Calling conventions
@ Passing control
@ Passing data
@ Managing local data

@ lllustration of recursion

Procedures
e}

Mechanisms in Procedures

2 () {
m Passing control c
® To beginning of procedure code ; - 0(x);
® Back to return point print (y) N
m Passing data : : 3
= Procedure arguments /—\
= Return value
= Memory management iry/Q(int 1)
= Allocate during procedure execution { fme £ o= 354
= Deallocate upon return int v[10];
m Mechanisms all implemented with
machine instructions _ return v[t];
m x86-64 implementation of a procedure :

uses only those mechanisms required

Procedures
oe

Mechanisms in Procedures

m Passing control c
® To beginning of procedure code
® Back to return point int (3
m Passing data

® Procedure arguments

= Return value T T

= Memory management int 0(§nt 1)
= Allocate during procedure execution
= Deallocate upon return int v[{0];
m Mechanisms all implemented with
machine instructions return v[t];

—

m x86-64 implementation of a procedure
uses only those mechanisms required

Procedures
oe

Mechanisms in Procedures

m Passing control
® To beginning of procedure code
= Back to return point
m Passing data
® Procedure arguments
= Return value
= Memory management
= Allocate during procedure execution
® Deallocate upon return
m Mechanisms all implemented with
machine instructions
m x86-64 implementation of a procedure
uses only those mechanisms required

int Q(int 1)

{
int t = 3*i;
int v[10];

return v([t];

—

Procedures
oe

‘ Wrapping up processes

@ Procedures
@ Mechanisms
@ Stack structure
@ Calling conventions

@ lllustration of recursion

Procedures
@000

x86-64 stack

Region of memory managed
with stack discipline stack

« Memory viewed as array of bytes. m
. Different regions have different e
purposes.
. . . m
« (Like ABI, a policy decision)

(0]

r

code|

Procedures
0000

x86-64 stack

Region of memory Stack “Bottom” __...----- ===
manag(?d -Wl-th stack
stack discipline
, . code
Stack Pointer: $rsp —
Stack “Top”

Procedures
0000

x86-64 stack

Region of memory managed
with stack discipline

Grows toward lower addresses

Register $rsp contains
lowest stack address
= address of “top” element

Stack Pointer: $rsp —

Stack “Bottom”

€

Stack “Top”

Increasing
Addresses

Stack Grows
Down
(toward
lower
addresses)

Procedures
0000

x86-64 stack: push

pushg Src

= Fetch operand at Src

= Decrement $rsp by 8

= Write operand at address given by $rsp

Stack Pointer: $rsp

i

Stack “Bottom”

. 4

Stack “Top”

Increasing
Addresses

Stack
Grows
Down

Procedures
0080

x86-64 stack: pop

Stack “Bottom”

popq Dest ‘

® Read value at address given by $rsp

® Increment $rsp by 8 Z\;;easing
resses
= Store value at Dest (must be register)

Stack
Grows
Down

Stack Pointer: % rspt%

Stack “Top”

Procedures
0o0e

O Wrapping up processes

@ Procedures
@ Mechanisms
@ Stack structure

@ Calling conventions
@ Passing control
@ Passing data
@ Managing local data

@ lllustration of recursion

Procedures
©000000000000000000

Code Examples

Procedures
©000000000000000000

void multstore(long x, long y, long *dest)
{
long t = mult2(x, y);
*dest = t;
} 0000000000400540 <multstore>:
400540: push $rbx # Save %rbx
400541: mov $rdx, $rbx # Save dest
400544: callg 400550 <mult2> # mult2(x,y)
400549: mowv $rax, ($rbx) # Save at dest
40054c: pop Srbx # Restore %$rbx
40054d: retq # Return
long mult2(long a, long b) I
{ long s = a * b; 0000000000400550 <mult2>:
tg . ! 400550: mov %rdi, $rax # a
: return s 400553: imul %rsi,%rax #a*b
400557: retqg # Return

Procedure Control Flow

Use stack to support procedure call and return
Procedure call: call label

push return address on stack

jump to label

Return address:

address of the next instruction right after call
(example from disassembly)

Procedure return: ret

pop address from stack

jump to address

Procedures
0@00000000000000000

Control Flow Example #1 .

L]

0000000000400540 <multstore>: 0x130
. 0x128 °

) 0x120

400544: callg 400550 <mult2>

400549: mov $rax, (%rbx) \\\\\
% 0x120

. $rsp

AN

%rip | 0x400544

0000000000400550 <mult2>:
400550: mov $rdi, $rax

400557: retqg

Procedures

0000000000000 000000

Control Flow Example #2 .

L]

0000000000400540 <multstore>: 0x130
. 0x128 °

) 0x120

400544: callg 400550 <mult2>

400549: mov Srax, ($rbx) <— 0x118-] 0x400549
. $rsp
srip- 0x400550
0000000000400550 <mult2>: —

400550: mov %rdi,%rax/

400557: retqg

Procedures
0000000000000000000

Control Flow Example #3 .

L]

0000000000400540 <multstore>: 0x130
. 0x128 °

) 0x120

400544: callg 400550 <mult2>
400549: mov $rax, ($rbx) €<—

0x118- 0x400549

. $rsp

srip-{ 0x400557
0000000000400550 <mult2>: /

400550: mov $rdi, $rax

400557: retqg

Procedures
0000@00000000000000

Control Flow Example #4 .

L]

0000000000400540 <multstore>: 0x130
. 0x128 °

) 0x120

400544: callg 400550 <mult2>
400549: mov

%rax,(%rbx)$\\\\

. \\\\\\iifp 0x120

%rip | 0x400549

0000000000400550 <mult2>:
400550: mov $rdi, $rax

400557: retqg

Procedures
00000800000000000000

Procedure Data Flow

Registers Stack
m First 6 arguments
e 0o 0
Srdi
Srsi Argn
Srdx
o o0
$rcx
$r8 Arg 8
%r9 Arg 7

m Return value

m Only allocate stack space

when needed

Procedures
0000000000000000000

void multstore

Data Flow (long x, long y, long *dest)
{
Examples long t = mult2(x, y);
*dest = t;

0000000000400540 <multstore>:
x in %rdi, y in %rsi, dest in %rdx
o e 0
400541: mov $rdx, $rbx # Save dest
400544: callg 400550 <mult2> # mult2(x,y)
t in %rax

400549: mov $rax, ($rbx) # Save at dest
o o0
long mult2 0000000000400550 <mult2>:
(long a, long b) # a in %rdi, b in %rsi
{ 400550: mov $rdi, $rax # a
long s = a * b; 400553: imul %rsi,%rax #a*b
return s; # s in %rax
} 400557: retq # Return

Procedures
0000000800000000000

Stack used for procedures

@ Stack used in languages which support recursion
- examples: C, Java
- code must be “re-entrant”

(multiple simultaneous instantiations of single procedure)

o Why stack?

We need some place to store state of each instantiation:
- arguments
- local variables

- return pointer

Procedures
0000000080000000000

Stack used for procedures

e Stack discipline:

state for given procedure needed for limited time

- from when called to when return

callee returns before caller does

@ Stack allocated in frames:

frame holds state for a single procedure instantiation

Procedures
0000000008000000000

Call Chain Example

yoo (...)

Procedure amI () is recursive

Example
Call Chain

yoo

l

N

amI amI

amI

amI

Procedures
0000000000800000000

Stack Frames o
revious
Frame
m Contents
= Return information
® | ocal storage (if needed) igg;ﬁ):g:;‘ter: srbp
= Temporary space (if needed) Frame for
proc
Stack Pointer: $rsp —

= Management ‘

= Space allocated when enter procedure Stack “Top”
= “Set-up” code
= Includes push by call instruction

= Deallocated when return
= “Finish” code

= Includes pop by ret instruction

Procedures
00000000000e0000000

Stack

Example

yoo (..) yoo $rbp

{ yoo
. Frsp——
who () ;

Procedures
0000000000008000000

Stack

Example
yopL— | yoo
{ |who (...) l
{ Yoo
« o o who
» am () ; %rbp
o« o e who
amI () ; srsp—
*_1 o« o

Procedures
0000000000008000000

Stack

Example

yoo
l yoo
wTo
amT who
Srbp
amI
Srsp—

Procedures
0000000000008000000

Stack

Example

l yoo
who
JamI (..) l
* { amI who
1 - |
i ©
o I
‘h" . amI(); an el
} : %rbp
} aml
Srsp———>

Procedures
0000000000008000000

Stack

Example

yoo

l yoo
wTo

amT who

aml amI

amI il

} srbp
amI
Srsp—

Procedures
0000000000008000000

Stack

Example
yoo
l yoo
who
JamI (..) l
1 aTI who
J o
-
. amI(); amt el
} : %rbp
1 } aml
Srsp———>

Procedures
0000000000008000000

Stack

Example

yoo
l yoo
wTo
amT who
Srbp
amI
Srsp—

Procedures
0000000000008000000

Stack

Example

yoo

l yoo
who

$rbp
who

Srsp—

Procedures
0000000000008000000

Stack

Example

yoo
l yoo
who
amI who
Srbp
amI
Srsp—

Procedures
0000000000008000000

Stack

yopL— | yoo
{ |who (...) l
{ yoo
e o o who
o o who
amI(); srsp >
'L"l o o

Procedures
0000000000008000000

Stack

yoo .

y0O (...) $rbp

{ yoo
. Srsp—

Procedures
0000000000008000000

x86-64 /Linux stack frame

p
m Current Stack Frame (“Top” to Bottom)
= “Argument build:”
Parameters for function about to call Caller
® Local variables Frame
, . . Arguments
If can’t keep in registers 74
" Saved register context Frame pointer \. |Return Addr
= Old frame pointer (optional) $rbp Old $rbp
(Optional)
Saved
m Caller Stack Frame el
+
= Return address Local
= Pushed by call instruction Variables
. .
Arguments for this call FTE
Stack pointer Build
%rsp——s |_(Optional)

Procedures
0000000000000e00000

Example: incr

long incr(long *p, long val) {
long x = *p;
long y = x + val;
*p = y;
return x;

inez: Register |Use(s) |
movq (%rdi), %rax .
addq Srax, Srsi $rdi Argument p
movqg $rsi, (%rdi) $rsi Argumentval, y
ret
$rax x, Return value

Procedures
00000000000000e0000

Example: Calling incr

Initial Stack Structure

long call incr() {
long vl = 15213;
long v2 = incr(&vl, 3000);
return vl+v2;
} Rtn address f— sr5p
call incr:
subq $16, %rsp Resulting Stack Structure
movq $15213, 8(%rsp)
movl $3000, %esi
leaq 8 (%rsp), %rdi
call incr
addg 8 (%rsp), %rax Rtn address
addgq $16, %rsp
ret 15213 |— Srsp+8
Unused |e— %rsp

Procedures
000000000000000e000

Example: Calling incr

long call_incr() {
long vl = 15213;

return vl+v2;

Stack Structure

long v2 = incr(&vl, 3000) ;

Rtn address

15213 |e— Srspt8

call incr:
subgq $16, %rsp
movq $15213, 8(%rsp)
movl $3000, %esi
leaq 8 (%rsp), %rdi
call incr
addg 8 (%rsp), %rax
addgq $16, %rsp
ret

Unused Srsp
Register |Usels)
$rdi &vl
$rsi 3000

Procedures
000000000000000e000

Example: Calling incr

long call_incr() {
long vl = 15213;

return vl+v2;

Stack Structure

long v2 = incr(&vl, 3000) ;

Rtn address

18213 |fe— %rspt8

call incr:
subgq $16, %rsp
movq $15213, 8(%rsp)
movl $3000, %esi
leaq 8 (%rsp), %rdi
call incr
addg 8 (%rsp), %rax
addgq $16, %rsp
ret

Unused Srsp
Register |Usels)
$rdi &vl

$rsi 3000

Procedures
000000000000000e000

Example: Calling incr

long call incr() {
long vl = 15213;

return v1+v2;

long v2 = incr(&vl, 3000);

Rtn address

18213

e— Srspt8

Unused

— 3IrSp

call incr:
subgq $16, %rsp
movq $15213, 8(%rsp)
movl $3000, %esi
leaq 8 (%rsp), %rdi
call incr
addg 8 (%rsp), %rax
addq $16, %rsp
ret

Register | Usels) |

$rax

Return value

Updated Stack Structure

Rtn address

— ISP

Procedures
000000000000000e000

Example: Calling incr

Updated Stack Structure

long call_incr() {
long vl = 15213;
long v2 = incr(&vl, 3000);
return v1l+v2;

Rtn address j—— $rsp

by ister | Usels) |
subqgq $le, $rsp

movq $15213, 8(%rsp) %rax Return value
movl $3000, %esi

leaq 8 (%rsp), %rdi Final Stack Structure
call incr

addg 8 ($rsp), %rax

addq $16, %rsp
ret e— TSP

Procedures
000000000000000e000

Register saving conventions

m When procedure yoo calls who:
= yoo is the caller
® who is the callee

m Can register be used for temporary storage?

yoo: who:
L] L] L] L] L] L]
movg $15213, %$rdx subg $18213, %rdx
call who e o o
addg %$rdx, %rax ret
L] L] L]
ret

= Contents of register $rdx overwritten by who
= This could be trouble => something should be done!
= Need some coordination

Procedures
0000000000000000e00

Register saving conventions

m When procedure yoo calls who:
= yoo is the caller
® who is the callee

m Can register be used for temporary storage?

m Conventions
= “Caller Saved”
= Caller saves temporary values in its frame before the call
= “Callee Saved”
= Callee saves temporary values in its frame before using
= Callee restores them before returning to caller

Procedures
0000000000000000e00

x86-64 /linux register usage

m 3rax Return value | Srax |
® Return value ~
| $rdi |
= Also caller-saved
® Can be modified by procedure | $rsi |
m $rdi, .., $r9 | $rdx |
. Arguments <
Arguments | D |
= Also caIIer-sfan./ed | 218 |
® Can be modified by procedure | |
o
%r9
m %rl0, %rll \| = |
o
%r10
= Caller-saved Caller-saved 2
= Can be modified by procedure temporaries | rll |

Procedures
00000000000000000e0

x86-64 /linux register usage

p
m $rbx, $rl2, $rl3, $rld | S rbx |
[] - o
Callee-saved Callee-saved | srl2 |
® Callee must save & restore Temporaries < | o |
m $rbp | 2r14 |
= Callee-saved | P |
= Callee must save & restore Special ~ cLOP
= May be used as frame pointer | Irsp |

= Can mix & match
m 3rsp
= Special form of callee save

= Restored to original value upon
exit from procedure

Procedures
00000000000000000e0

Callee-saved example

Initial Stack Structure

long call_incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

Rtn address

[%rsp

call incr2:
pushg $rbx
subqgq $16, %rsp
movq %$rdi, %rbx
movqg $15213, 8(%rsp)
movl $3000, %esi
leaq 8 (%rsp), %rdi
call incr
addg %$rbx, %rax
addgq $16, %rsp
Popgq $rbx
ret

Resulting Stack Structure

Rtn address

Saved $rbx

15213

e— 3rsp+8

Unused

«— 3rsp

Procedures
000000000000000000e

Callee-saved example

long call_incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

Rtn address

Saved $rbx

call incr2:
pushg $rbx
subq $16, %rsp
movq %$rdi, %rbx
movqg $15213, 8(%rsp)
movl $3000, %esi
leaq 8 (%rsp), %rdi
call incr
addg %$rbx, %rax
addqgq $16, %rsp
popq $rbx
ret

15213

e— Srspt+8

Unused

«— $Irsp

Pre-return Stack Structure

Rtn address

le—

Srsp

Procedures
000000000000000000e

O Wrapping up processes

@ Procedures
@ Mechanisms
@ Stack structure

@ Calling conventions
@ Passing control
@ Passing data
@ Managing local data

@ lllustration of recursion

Procedures

Recursive Function

/* Recursive popcount */
long pcount_r (unsigned long x) {

if (x == 0)
return 0;
else

return (x & 1)
+ pcount r(x >> 1);

pcount r:
movl
testqg
je
pushg
movq
andl
shrq
call
addg
pPopPq

.L6:

$0, %eax
$rdi, %$rdi
.L6

$rbx

$rdi, %$rbx
$1, %ebx
$rdi
pcount_r

$rbx, %rax
$rbx

rep; ret

Procedures

Recursive Function Terminal Case

/* Recursive popcount */ pcount_r:
long pcount_r (unsigned long x) { movl $0, %eax
if (x == 0) testqg $rdi, %rdi
return O; je .L6
else pushqg $rbx
return (x & 1) movq $rdi, %$rbx
+ pcount _r(x >> 1); andl $1, %ebx
} shrq $rdi
call pcount_r

addqg %$rbx, %rax
popa $rbx

.L6:
. rep; ret
Register [Usels) ___|Type |
$rdi b3 Argument
$rax Return value Return value

Procedures

Recursive Function Register Save

pcount r:
/* Recursive popcount */ movl $0, %eax
long pcount_r (unsigned long x) { testqg %rdi, %$rdi
if (x == 0) je .L6
return 0; pushg $rbx
else movq %$rdi, %$rbx
return (x & 1) andl $1, %ebx
+ pcount r(x >> 1); shrq $rdi
} call pcount_r
addg %$rbx, %rax

popg $rbx
.L6:
rep; ret

[Register [Usels) _____[Type ___

$rdi b3 Argument

Rtn address

Saved $rbx fe—— $rsp

Procedures

Recursive Function Call Setup

/* Recursive popcount */ pcount_r:
long pcount_r (unsigned long x) { movl $0, %eax
if (x == 0) testg $rdi, %rdi
return O; je .L6
else pushqg $rbx
return (x & 1) movq %$rdi, %$rbx
+ pcount r(x >> 1); andl $1, %ebx
} shrq $rdi
call pcount_r

addqg %$rbx, %rax
popa $rbx

.L6:
. rep; ret
Register | Use(s) ______[Type |
$rdi x >> 1 Rec. argument
$rbx x &1 Callee-saved

Procedures

Recursive Function Call

/* Recursive popcount */ pcount_r:
long pcount_r (unsigned long x) { movl $0, %eax
if (x == 0) testg $rdi, %rdi
return O; je .L6
else pushqg $rbx
return (x & 1) movq $rdi, %$rbx
+ pcount _r(x >> 1); andl $1, %ebx
} shrq $rdi
call pcount_r

addqg %$rbx, %rax
popa $rbx

.L6:
Register_luses) [yoe (RSO
$rbx x &1 Callee-saved
$rax Recursive call

return value

Procedures

Recursive Function Result

/* Recursive popcount */ pcount_r:
long pcount_r (unsigned long x) { movl $0, %eax
if (x == 0) testg $rdi, %rdi
return O; je .L6
else pushqg $rbx
return (x & 1) movq $rdi, %$rbx
+ pcount _r(x >> 1); andl $1, %ebx
} shrq $rdi
call pcount_r

addgq %$rbx, %rax
popa $rbx

.L6:
Register_luses) [yoe (RSO
$rbx x &1 Callee-saved
$rax Return value

Procedures

Recursive Function Completion

pcount r:
/* Recursive popcount */ movl $0, %eax
long pcount_r(unsigned long x) { testq $rdi, %rdi
if (x == 0) je .L6
return 0; pushqg $rbx
else movq %$rdi, %rbx
return (x & 1) andl $1, %ebx
+ pcount _r(x >> 1); shrq $rdi
} call pcount_r
addqgq %$rbx, %rax

Popa $rbx
.L6:
rep; ret

Register [Usels) _____[Type ___

$rax Return value Return value

— SIrsp

Procedures

Observations About Recursion

m Handled Without Special Consideration
= Stack frames mean that each function call has private storage
= Saved registers & local variables
= Saved return pointer

= Register saving conventions prevent one function call from corrupting
another’s data

= Unless the C code explicitly does so (e.g., buffer overflow in Lecture 9)
= Stack discipline follows call / return pattern
= If P calls Q, then Q returns before P
= Last-In, First-Out
m Also works for mutual recursion
" PcallsQ; QcallsP

Procedures

x86-64 Procedure Summary

m Important Points

= Stack is the right data structure for procedure call /
return Caller

= If P calls Q, then Q returns before P Frame

m Recursion (& mutual recursion) handled by

normal calling conventions \

srbp

® Can safely store values in local stack frame and in (Optional)

callee-saved registers
= Pput function arguments at top of stack
® Result returnin $rax
m Pointers are addresses of values
® On stack or global

Srsp—

Procedures

Arguments
7+

Return Addr

Old %rbp

Saved
Registers
+
Local
Variables

Argument
Build

	Wrapping up processes
	Procedures
	Mechanisms
	Stack structure
	Calling conventions
	Illustration of recursion

