CSCI2467: Systems Programming Concepts

Slideset 10: Virtual Memory
Source: CS:APP Chapter 9, Bryant & O'Hallaron

Course Instructors: Course Assistants:
Matthew Toups Saroj Duwal
Caitlin Boyce David McDonald

Spring 2020

Today

@ Class notes

© Virtual Memory
@ Address spaces
@ VM as a tool for caching
@ VM as a tool for memory management
@ VM as a tool for memory protection
@ How it works: address translation and memory mapping
@ Summary

Virtual Memory
©000000000

Addressing Memory

@ We know that each byte of memory (RAM) in a computer has an address.

@ We know that memory at an address can contain code (machine instructions) or
data (bytes in some data format)

@ We know (from previous class) that both code and data may be stored in a cache
to speed up future accesses (thanks to locality)

@ We've seen this first hand with a running program using GDB

Virtual Memory
0000000000

Example using bomblab

matoups1@math209:~/2467/bomb3$ objdump -d bomb -M intel

400da7: e8 a0 09 00 00 call 40174c <initialize_bomb >
400dac: bf b8 25 40 00 mov edi ,0x4025b8

400dbl: e8 1la fd ff ff call 400ad0 <puts@plt>
400db6: bf f8 25 40 00 mov edi ,0x4025f8

400dbb: e8 10 fd ff ff call 400ad0 <puts@plt>
400dc0: e8 e9 07 00 00 call 4015ae <read_line>
400dch: 48 89 c7 mov rdi , rax

400dc8: e8 b4 04 00 00 call 401281 <phase_1>
400dcd: e8 4e 06 00 00 call 401420 <phase_defused >
400dd2: bf 28 26 40 00 mov edi ,0x402628

400dd7: e8 f4 fc ff ff call 400ad0 <puts@plt>

(gdb) x/s 0x402628
0x402628: "Phase 1 defused. How about the next one?"

Virtual Memory
0080000000

Example using bomblab

matoups2@math209:~/2467/bomb46$ objdump -d bomb -M intel

400da7: €8 71 09 00 00 call 40171d <initialize_bomb >
400dac: bf 98 25 40 00 mov edi ,0x402598

400dbl: e8 1la fd ff ff call 400ad0 <puts@plt>
400db6: bf d8 25 40 00 mov edi ,0x4025d8

400dbb: e8 10 fd ff ff call 400ad0 <puts@plt>
400dcO: e8 19 08 00 00 call 4015de <read_line>
400dch: 48 89 c7 mov rdi , rax

400dc8: e8 e4 04 00 00 call 4012bl <phase_1>
400dcd: e8 7e 06 00 00 call 401450 <phase_defused >
400dd2: bf 08 26 40 00 mov edi ,0x402608

400dd7: e8 f4 fc ff ff call 400ad0 <puts@plt>

(gdb) x/s 0x402608
0x402608: "Phase 1 defused. How about the next one?"

Virtual Memory
0008000000

How does this work?

Process 1 Process 1 Process 2

O00007FFFFFFFFFFF O00007FFFFFFFFFFF
Stack Stack Stack

! ! !

Shared Shared Shared
Libraries Libraries Libraries
t t t

Heap Heap Heap

Data Data Data

Text Text Text
400000 400000
000000 000000

Virtual Memory
0000800000

Making processes and address spaces work together

How does this work?
Using a crucial system called Virtual memory

Let's introduce VM by starting with what we had before: physical memory addressing

Virtual Memory
0000080000

A system using physical addressing

Main memory

0:
1:
Physical address 2:
e (PA) > 431 Used in “simple” systems
4 5. like embedded
1 6: microcontrollers in
7: devices like cars,
8: elevators, and digital
picture frames.
M-1
Data word

Virtual Memory
0000008000

A system using virtual addressing

Used in all modern servers, laptops, and smart phones
One of the key ideas in computer systems!

Main memory

0:
CPU Chip 1:
Virtual address Physical address ;
(VA) (PA) .
CPU > MMU —4—> 4:
4100 5.
A

6:
7:
8:
M-1

Data word

Virtual Memory
0000000800

Address spaces

m Linear address space: Ordered set of contiguous non-negative integer
addresses:
{0,1,2,3...}

m Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3,..,N-1}

m Physical address space: Set of M = 2™ physical addresses
{0,1,2,3,..,M-1}

Virtual Memory
0000000080

Why virtual memory (VM)?

m Uses main memory efficiently
= Use DRAM as a cache for parts of a virtual address space

m Simplifies memory management
® Each process gets the same uniform linear address space

m Isolates address spaces

® One process can’t interfere with another’s memory
= User program cannot access privileged kernel information and code

Virtual Memory
000000000e

Today

@ Class notes

© Virtual Memory
@ Address spaces
@ VM as a tool for caching
@ VM as a tool for memory management
@ VM as a tool for memory protection
@ How it works: address translation and memory mapping
@ Summary

Virtual Memory
©00000000000

VM as a tool for caching

m Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.

m The contents of the array on disk are cached in physical
memory (DRAM cache)

= These cache blocks are called pages (size is P = 2P bytes)

Virtual memory Physical memory

VP 0 | Unallocated 0

VP 1 | Cached 0 Empty PPO
Uncached \ PP1

Unallocated Empty

Cached

Uncached >< Empty

Cached PP 2m-P_1

VP 2"P-1 | Uncached

N-1

Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM

Virtual Memory
0®0000000000

Address spaces

m DRAM cache organization driven by the enormous miss penalty
= DRAM is about 10x slower than SRAM
= Disk is about 10,000x slower than DRAM

m Consequences
= Large page (block) size: typically 4 KB, sometimes 4 MB
= Fully associative
= Any VP can be placed in any PP
= Requires a “large” mapping function — different from cache memories
= Highly sophisticated, expensive replacement algorithms
*= Too complicated and open-ended to be implemented in hardware
= \Write-back rather than write-through

Virtual Memory
008000000000

Enabling data structure: page table

m A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
= Per-process kernel data structure in DRAM

Physical memory

Physical page (DRAM)
number or
Valid disk address / z: ; PPO
PTEO| 0 null Vo
1 «—
VP4 PP3
1 «—
0 e
1 -~ -~
0 null 9 Virtual memory
0 > e (disk)
el
Memory resident “~.
page table Sl N
(DRAM) \\ __VP3
| —

Virtual Memory
000800000000

Page hit

m Page hit: reference to VM word that is in physical memory
(DRAM cache hit)

Virtual address Physical page (DRAM)

number or
Valid disk address z: ; PPO
PTEO| 0 null Voo
. - VP4 PP3
1 o«
0 «Q
1 <
0 null > Virtual memory
0 . I (disk)
Tl L N AN [w1]
Memory resident "~
page table Sl N
(DRAM) \\ __VP3

Virtual Memory
000080000000

Page fault

m Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

Physical page
Virtual address number or (DRAM)

Valid disk address ‘\;: ; PPO
PTEO[0 null .2
: - VP4 PP3
1 «—
0 e
1 -
0 null Ppas Virtual memory
0 - N (disk)
ezl
Memory resident ~.
page table Sl N
(DRAM) \\ __VP 3

Virtual Memory

O0000@000000

Handling page fault

m Page miss causes page fault (an exception)

Virtual address

Physical page
number or

Valid disk address

PTEOQ

PTE7

0

«—

oS

null P

rlolo|r|lo |k |-

[3
o ~.

<
Memory resident ~~. _

page table
(DRAM)

/ VP2
null

Physical memory
(DRAM)

VP1

PP 0

VP 7

VP4

Virtual Memory

000000800000

Handling page fault

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)

Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address / x: ; PPO
PTEO| 0 null / w2
1 «—
VP4 PP3
1 —
0 e
1 -
0 null P d Virtual memory
0 S AR (disk)
el]
Memory resident \\ \\
e’ . Lws]
(DRAM) .. VP3

Virtual Memory
000000080000

Handling page fault

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)

Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address / x: : PPO
PTEO| 0 null / w?
1 «—
VP3 PP3
1 —
1 —
0 .
0 null ~o Virtual memory
0 - <L (disk)
Pre7la e
Memory resident \\ \\
v o N Y E-E R
(DRAM) S~ S VP3

Virtual Memory
000000008000

Handling page fault

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)

m Offending instruction is restarted: page hit!
Physical memory

Physical page
Virtual address number or (DRAM)

Valid disk address / x: : PPO
PTEO| 0 null / w2
1 «—
vP3 PP3
1 —
1 —
0 [8
0 null "~ Virtual memory
0 3 Sk (disk)
prezia et
st
PoRAM)
(DRAM) oo s VP3
Key point: Waiting until the miss to copy the page to _m
DRAM is known as demand paging
[w7 |

Virtual Memory
000000000800

Allocating pages

m Allocating a new page (VP 5) of virtual memory.
Physical memory

Physical page (DRAM)
number or
Valid disk address / x:: PPO
PTEO]| 0 null / 2
1 «—
VP3 PP3
1 —
1 —
0 [N
0 bl Virtual memory
0 o N (disk)
FrETis CANE NN [wr]
Memory resident s>~
page table RN N
(DRAM) A NN [w3 |

Virtual Memory
000000000080

Locality to the rescue! (again)

m Virtual memory seems terribly inefficient, but it works
because of locality.

m At any point in time, programs tend to access a set of active
virtual pages called the working set

® Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size)
® Good performance for one process after compulsory misses

m If (SUM(working set sizes) > main memory size)

® Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously

Virtual Memory
000000000008

Today

@ Class notes

© Virtual Memory
@ Address spaces
@ VM as a tool for caching
@ VM as a tool for memory management
@ VM as a tool for memory protection
@ How it works: address translation and memory mapping
@ Summary

Virtual Memory
@000

VM as a tool for memory management

m Key idea: each process has its own virtual address space
® [t can view memory as a simple linear array
= Mapping function scatters addresses through physical memory

= Well-chosen mappings can improve locality

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

0

VP1

VP2

VP1

VP2

Address
translation

0

M-1

Physical

Address

PP2 Space

(DRAM)

(e.g., read-only

library code)

Virtual Memory

VM as a tool for memory management

m Simplifying memory allocation
® Each virtual page can be mapped to any physical page
= Avirtual page can be stored in different physical pages at different times
m Sharing code and data among processes
= Map virtual pages to the same physical page (here: PP 6)
0 Address 0

Virtual lati Physical
Address VP 1 translation Address
Space for VP2 PP 2 Space
Process 1: (DRAM)
o
(e.g., read-only
PP 6 library code)
. 0

Virtual PP S
Address VP 1
Space for VP2
Process 2:

Virtual Memory

N-1

Simplifying linking and loading

m Linking
= Each program has similar virtual
address space

® Code, data, and heap always start
at the same addresses.

m Loading

= execve allocates virtual pages
for .text and .data sections &
creates PTEs marked as invalid

The . text and .data sections
are copied, page by page, on
demand by the virtual memory
system

0x400000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

Kernel virtual memory

User stack
(created at runtime)

v
?

Memory-mapped region for
shared libraries

T

Run-time heap
(created by malloc)

Read/write segment
(-data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

Virtual Memory

Memory
invisible tc
user code

+—3%rsp
(stack
pointer)

<— brk

Loaded
from

the
executable
file

Today

@ Class notes

© Virtual Memory
@ Address spaces
@ VM as a tool for caching
@ VM as a tool for memory management
@ VM as a tool for memory protection
@ How it works: address translation and memory mapping
@ Summary

Virtual Memory

VM as a tool for memory protection

m Extend PTEs with permission bits
m MMU checks these bits on each access

Physical
Process i: SUP READ WRITE EXEC Address Address Space

VP 0: No Yes No Yes PP 6
VP 1: No Yes Yes Yes PP 4

VP 2: Yes Yes Yes No PP2 PP2

PP4

PP 6

Processj: _SUP READ WRITE EXEC Address P8

VPO: | No Yes No Yes PP9 PP 9
VP1:| Yes Yes Yes Yes PP 6

VP2:| No Yes Yes Yes PP 11 > PP11

Virtual Memory

Today

@ Class notes

© Virtual Memory
@ Address spaces
@ VM as a tool for caching
@ VM as a tool for memory management
@ VM as a tool for memory protection
@ How it works: address translation and memory mapping
@ Summary

Virtual Memory
©000000

Address translation: page hit

CPU Chip oTEA

cPu Cache/

PA Memory

Data

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Virtual Memory
0000000

Address translation: page fault

Exception
|m————————— > Page fault handler
1
1
1
1
CPU Chip 1 PTEA Victim page
VA i PTE
cPU MMU ey Disk
Memory
New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

Virtual Memory
0080000

Integrating VM and cache

PTE
CPU Chip l e PTE
hit
PTEA prea| PTEA
miss
cPU VA MMU Memory
PA PA PA
miss|
PA Data
|/ hit
L1
Data cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Virtual Memory
0000000

Speeding up translation with a TLB

m Page table entries (PTEs) are cached in L1 like any other
memory word
= PTEs may be evicted by other data references
= PTE hit still requires a small L1 delay

m Solution: Translation Lookaside Buffer (TLB)
® Small set-associative hardware cache in MMU
= Maps virtual page numbers to physical page numbers
= Contains complete page table entries for small number of pages

Virtual Memory
0000800

TLB Hit

CPU Chip

PTE

CPU > MMU

Cache/
Memory

Data

A TLB hit eliminates a memory access

Virtual Memory
0000080

TLB Miss

CPU Chip
TLB
7
PTE
VPN |
VA N PTEA
CPU MMU Cache/
PA Memory
Data

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

Virtual Memory
0000000

Summary

m Programmer’s view of virtual memory
= Each process has its own private linear address space
= Cannot be corrupted by other processes

m System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and programming
= Simplifies protection by providing a convenient interpositioning point
to check permissions

Virtual Memory
°

	Class notes
	Virtual Memory
	Address spaces
	VM as a tool for caching
	VM as a tool for memory management
	VM as a tool for memory protection
	How it works: address translation and memory mapping
	Summary

