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Shell lab

do not use waitpid in eval! Use waitfg in eval.

the names waitfg and waitpid can be confused, but they
differ a lot

You should use waitpid() to reap in sigchld handler

waitfg can be pretty simple and just checks the jobs list

You will want to use fgpid() and/or getjobpid()

putting a while loop around sleep(1) is fine

Class notes
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Shell lab and pointers

@ Confused about jobs and struct job_t *j?

struct job_t jobs[MAXJOBS]; /* The job list */
- this is an array of structs
- jobs[0] is a single job

- jobs (no index) is a pointer to the beginning of the array

struct job_t *j; /* pointer to one job struct */
- see examples in addjob() and clearjob()

(helper functions given at the bottom of tsh.c)
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Shell lab and pointers

/% addjob - Add a job to the job list */
int addjob(struct job_t *jobs, pid_t pid, int state,
char *cmdline)

{

int 1i;

for (i = 0; i < MAXJOBS; i++) {
if (jobs[il].pid == 0) {
jobs[i].pid = pid;
jobs[i].state = state;
jobs[i].jid = nextjid++;
if (nextjid > MAXJOBS)
nextjid = 1;
strcpy (jobs[i].cmdline, cmdline);
if (verbose){
printf ( , jobs[il.jid,
jobs[i].pid, jobs[i].cmdline);
}
return 1;

}
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Shell lab and pointers

/* clearjob - Clear the entries inm a job struct */
void clearjob(struct job_t *job) {
job->pid = 0;
job->jid 0;
job->state = UNDEF;
job->cmdline [0] = ;

@ In C, if we have:
struct my_t s;
struct my_t *sp = &s;
S.a accesses a as a member of struct s
sp—>a dereferences sp, then accesses member a
equivalent to: (*sp).a
@ See p.131-132 of K&R for more

Class notes
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Random-Access Memory (RAM)

Key Features
4Gb (x4) 4Gb (x8)

RAM is typically packaged as a chip

Basic storage unit is normally a cell
(one bit per cell)

Multiple RAM chips form modules

o RAM comes in two varieties:
SRAM (Static RAM)
DRAM (Dynamic RAM)

Computer Memory
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SRAM vs DRAM summary

Trans. Access Needs Needs
perbit time refresh? EDC? Cost  Applications

SRAM  4or6 11X No Maybe  100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
frame buffers

Trans. — transistors
EDC — error-detecting code

Computer Memory
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Nonvolatile memories
Types and uses

m DRAM and SRAM are volatile memories

Lose information if powered off.

m Nonvolatile memories retain value even if powered off

Read-only memory (ROM): programmed during production

Programmable ROM (PROM): can be programmed once

Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)

Electrically eraseable PROM (EEPROM): electronic erase capability

Flash memory: EEPROMs. with partial (block-level) erase capability
= Wears out after about 100,000 erasings

m Uses for Nonvolatile Memories

Firmware programs stored in a ROM (BIOS, controllers for disks,
network cards, graphics accelerators, security subsystems,...)

Solid state disks (replace rotating disks in thumb drives, smart
phones, mp3 players, tablets, laptops,...)
Disk caches

Computer Memory
0000



Traditional Bus Structure Connecting
CPU and Memory

m A bus is a collection of parallel wires that carry address,
data, and control signals.

m Buses are typically shared by multiple devices.

CPU chip

Register file

1L

ALU

Bus interface

(—

Computer Memory
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System bus

10
bridge

Memory bus

o

Main
memory




The CPU-memory gap

The gap widens between DRAM, disk, and CPU speeds
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The CPU-memory gap

This gap has driven systems design for decades

@ CPU can execute billions of instructions per second
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The CPU-memory gap

This gap has driven systems design for decades

CPU can execute billions of instructions per second

CPU gets instructions from main memory (DRAM)

Main memory (DRAM) can service tens or hundreds of
millions of accesses per second

Bottleneck! How can we utilize the speed of the CPU?

@ This is a major dilemmma facing hardware and software
designers

Computer Memory
oe



@ Class notes
@ Computer Memory
@ Underlying technologies
@ The crucial challenge in
systems design
© Locality
@ Principles and types
@ Examples

@ Memory hierarchies

© Caching

@ Caching illustrated
@ General Concepts
@ Cache associativity
@ Cache misses

@ Cache writes

@ Performance

Locality
°



Locality to the rescue!

The key to bridging this CPU-Memory gap is a fundamental
property of computer programs known as locality

Locality
Yo}



Locality: priciple and types

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

m Temporal locality: LT |

= Recently referenced items are likely
to be referenced again in the near future

m Spatial locality: LTI |

® |tems with nearby addresses tend
to be referenced close together in time

Locality
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Locality example
i++)

sum = 0;
0; i < n;

for (i =
sum += a[i];

return sum;

@ Data references
- reference array elements in succession

- reference variable sum each iteration:

@ Instruction references
- reference instructions in sequence:

- cycle through loop repeatedly:
@000
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sum =

for (i
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return sum;

@ Data references
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Locality example

= 0; i < n; i++)

sum =

for (i
sum += a[i];

return sum;

@ Data references
- reference array elements in succession: Spatial locality
- reference variable sum each iteration: Temporal locality

@ Instruction references
- reference instructions in sequence: Spatial locality

- cycle through loop repeatedly: Temporal locality
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Locality Example

m Question: Does this function have good locality with
respect to array a?

int sum_array cols(int a[M] [N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)
sum += a[i] []];
return sum;

Locality
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Qualitative Estimates of Locality

m Claim: Being able to look at code and get a qualitative
sense of its locality is a key skill for a professional
programmer.

m Question: Does this function have good locality with
respect to array a?

int sum_array rows(int a[M] [N])

{

int i, j, sum = 0;

for (i = 0; 1 < M; i++4)
for (j = 0; j < N; j++)
sum += a[i] [j];
return sum;

}

Locality
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Locality Example

m Question: Can you permute the loops so that the function
scans the 3-d array a with a stride-1 reference pattern
(and thus has good spatial locality)?

int sum_array 3d(int a[M] [N] [N])
{

int i, j, k, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
for (k = 0; k < N; k++)
sum += a[k] [i][]]~
return sum;

Locality
000e



Memory hierarchies

m Some fundamental and enduring properties of hardware
and software:

® Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).

® The gap between CPU and main memory speed is widening.
= Well-written programs tend to exhibit good locality.

m These fundamental properties complement each other
beautifully.

m They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

Locality
°
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Source: http://csillustrated.berkeley.edu
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http://csillustrated.berkeley.edu

' Caches:
@ |  What Are They For?

load word
0x02009AD0O

@,
For computers, memory accesses %
are like going to the library, (
(«

Caching
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] ] ] ]
€ 0x002008. . . 0x00200A. . .

0x0CA829F0 4

o

Caching
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Finding the necessary
information in the page
of a book,

h

And going back home to do the
work involving that information.

0x0CA829F0
g

»



While computers don't mind
going back and forth like this
for data, it usually means users
have to do a lot of waiting.

Fortunately for users, computers have caches,
which is the equivalent of keeping copies of the
books needed on a shelf near the workspace.
Through a number of mechanisms, caches give the
illusion of being able o access memory very quickly!

Kitona fim

Source: CS lllustrated



http://csillustrated.berkeley.edu/PDFs/handouts/cache-1-basics-handout.pdf

Caches
Definitions

m Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

m Fundamental idea of a memory hierarchy:
® For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.
m Why do memory hierarchies work?

= Because of locality, programs tend to access the data at level k more
often than they access the data at level k+1.

= Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.

m Big Idea: The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

Caching
©0000000



Cache memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware
" Hold frequently accessed blocks of main memory

m CPU looks first for data in cache
m Typical system structure:

CPU chip

Register file
Cache <ﬁ>
memory AL
ir N
] o] Main
Bus interface <:_l/ bridge <:> memory

System bus Memory bus

Caching
00000000



Intel Core i7 Cache Hierarchy

Processor package
Core 0 Core 3
Regs Regs
L1 L1 L1 L1
d-cache| | i-cache d-cache| | i-cache

L2 unified cache

[

L2 unified cache

.

L3 unified cache
(shared by all cores)

omputer

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

Cachin




Example Memory
. Hierarchy "%/ .

CPU registers hold words

Smaller, retrieved from the L1 cache.
faster, L1:/ L1 cache
and (SRAM) L1 cache holds cache lines
?ost“er La: L2 cache retrieved from the L2 cache.
per byte) (SRAM)
storage L2 cache holds cache lines
devices retrieved from L3 cache

L3: L3 cache

(SRAM)

L3 cache holds cache lines
retrieved from main memory.

Larger,

slower, L4: Main memory

and (DRAM) Main memory holds
cheaper disk blocks retrieved
(per byte) from local disks.
storage | 5. Local secondary storage

devices (local disks)

Local disks hold files
4 retrieved from disks
on remote servers

L6: Remote secondary storage
(e.g., Web servers)

CS:APP3e Figure 6.21

Cachi
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Examples of Caching in the Mem. Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 4-8 bytes words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware
MMU

L1 cache 64-byte blocks On-Chip L1 4 | Hardware

L2 cache 64-byte blocks On-Chip L2 10 | Hardware

Virtual Memory 4-KB pages Main memory 100 | Hardware + OS

Buffer cache

Parts of files

Main memory

100

oS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server

Caching
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General Cache Concepts

Smaller, faster, more expensive
Cache I 4 ” 9 II 10 II 3 I memory caches a subset of
the blocks

Data is copied in block-sized
transfer units

Larger, slower, cheaper memory
Memory I 0 ” 1 II 2 II 3 I viewed as partitioned into “blocks”
Ladl s Il e || 7 |
I | o [ 20 [ 11 |
[[(12 |[ 13 || 14 ][ 15 |
00 000000OCGCOGEOIOGNOGNOSIOSINOINDS

CS:APP3e Figure 6.22

Caching
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General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
Cache [[ 8 [ o |l 2a f[ 3 ||
Memory L o [ 2 J[ 2 | 3 |
[ s JLes Il 7|
[ 8 o J[ 20 [ 11 ]
| 12 || 13 || 14 || 15 |
00 00000O0OGEOOOGOOSGNOSNOSNOSNOSIOS

Caching
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General Cache Concepts: Miss

Cache

Memory

Caching
0000000e

Request: 12

[ 8 J[ 12 |[ 14 || 3 |
E Request: 12
Lol 2 Jl 2 ][ 3]
[ a [ s || 6 || 7 |
I [ o [ 10 || 11 |
| 12 || 13 || 14 || 15 |

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)



Cache AssociaTivi‘ry-‘I 6

Just as bookshelves come in different shapes and sizes, caches can also take on a variety of forms
and capacities. But no matter how large or small they are, caches fall into one of three categories:

direct mapped, n-way set associative, and fully associative.

Direct Mapped

. Tag Index Offset

A cache block can only go in one spot in the
cache. It makes a cache block very easy to
find, but it's not very flexible about where
to put the blocks.

L TN N




2-Way Set Associative

Tag Index Offset

f This cache is made up of sets that can fit
two blocks each. The index is now used to
find the set, and the tag helps find the
block within the set.

4-Way Set Associative
Tag Index Offset
Each set here fits four blocks, so there are

fewer sets. As such, fewer index bits are
needed.

Caching




Fully Associative

Tag Offset

No index is needed, since a cache block can
go anywhere in the cache. Every tag must be
compared when finding a block in the cache,
but block placement is very flexible!

That's because they are! The direct mapped
cache is just a 1-way set associative cache,
and a fully associative cache of m blocks is
an m-way set associative cache!

They all look set
associative to me...

Source: CS lllustrated

Caching



http://csillustrated.berkeley.edu/PDFs/handouts/cache-3-associativity-handout.pdf

General Caching Concepts:
Types of Cache Misses

m Cold (compulsory) miss
® Cold misses occur because the cache is empty.
m Conflict miss

= Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

= E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

= E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
m Capacity miss

= Occurs when the set of active cache blocks (working set) is larger than
the cache.

Caching




— | Cache Misses S
When you just can't find
( I what you're looking for... @

Sometimes, the cache doesn't have the memory block the computer’s looking
for. When this happens, it's called a cache miss. There are three causes of
cache misses. Just remember the three C's:

ld
,J @ ompulsory

Compulsory misses happen when a
block is referenced for the first
time. The computer can't get a

\
@ block that doesn't exist yet!

Caching




apacity
The block is not in the cache
because there is no space in the
cache for it. Caches are of finite
size, after all.

Hey! I needed
that!

onflict
These types of misses happen only
in direct-mapped and set-
associative caches. Multiple blocks
can be mapped to a set, forcing
evictions when the set is full.

Source: CS lllustrated

Caching



http://csillustrated.berkeley.edu/PDFs/handouts/cache-2-misses-handout

What about writes?

m Multiple copies of data exist:
= L1, L2, L3, Main Memory, Disk
m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)
m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes straight to memory, does not load into cache)
m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

Caching



Memory hierarchy summary

m The speed gap between CPU, memory and mass storage
continues to widen.

m Well-written programs exhibit a property called locality.

m Memory hierarchies based on caching close the gap by
exploiting locality.

Caching




Cache performance metrics

m Miss Rate
® Fraction of memory references not found in cache (misses / accesses)
=1 - hitrate
= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
= Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2

m Miss Penalty

= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

Caching




Consider these numbers

m Huge difference between a hit and a miss
= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?
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Consider these numbers

m Huge difference between a hit and a miss
= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

Caching




Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.
= Try to maximize spatial locality by reading data objects with
sequentially with stride 1.

Caching
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