CSCI2467: Systems Programming Concepts

Slideset 8: System System Level 1/0
Source: CS:APP Chapter 10, Bryant & O’Hallaron

Instructor: M. Toups

Spring 2020

&

THE UNIVERSITY of
NEW ORLEANS

DEPARTMENT OF
COMPUTER SCIENCE

Shell lab: testing/grading

@ /0O redirection will be covered today

Shell lab note
[Yolele)

Shell lab: testing/grading

Use make testO1l etc
and use make rtestO1 etc
Compare behavior and output.

Output must match!

When you've started passing more tests, use checktsh.py to
run all tests

@ The Checking Your Work section of the shell lab writeup
has more, use it

Shell lab note
0000

Shell lab
jobs list

@ jobs is a global variable (array of job_t structs), accessible
throughout the tsh program.

- already created at top of tsh.c
- managed by addjob() and deletejob()

- These helper functions are given to you, but you must use
them correctly!

@ book's use of addjob in Figure 8.39 (p. 777) is intentionally
flawed

- avoid the race condition! (more shortly)

- find a better way to block signals to ensure proper ordering

Shell lab note
0000

Shell lab
Hints

the name waitpid can be misleading

it does more than just wait, also reaps

You should use waitpid in your sigchld handler

waitfg can be pretty simple

just checks the jobs list repeatedly

returns once there is no more foreground job

but it only works if your jobs list is correctly updated!

(which depends on signal handlers)

You may want to use fgpid() and/or getjobpid()

putting a while loop around sleep(1) is fine

Much more in the writeup's Hints section - use it!

Shell lab note
feYelel)

@ Shell lab note
@ Race conditions

© System Level 1/0
@ Unix I/0
@ Files
@ Opening and closing files
@ Metadata, sharing, and redirection
@ Standard I/O Functions
@ Applying what we know to Shell lab

Race conditions
@000

What is a race condition? See CS:APP3e section 8.5.6
Synchronizing Flows to Avoid Nasty Concurrency Bugs

Race conditions
0000

Race condition in tsh

Recall: parent and child processes may run in unpredictable
order (OS scheduler, etc)

Seen in forks.c examples, also in forkSig.c

So we have no way to know if parent or child goes first after
fork()

If child process is short-lived (such as /bin/1s which
completes almost immediately) we have a problem:
sometimes child will finish and generate SIGCHLD before
parent has reached addjob()

if sigchld handler reaps and calls deletejob() (as it
should), then the job will be deleted before it is added
consequence: addjob() will come after deletejob() so that

job will never be deleted

5 ’a x“ w,.(r-\
o &l\,\ \o al’vl“

Race conditions
0000

Solving race condition in tsh

@ Solution for this race condition: signal blocking

@ We can temporarily block signals using sigprocmask()

- do this before fork()

- be aware: signal mask is inherited by child process! (just like
everything else)

- child must unblock signals before execve ()

- parent does not unblock signals until after addjob()

@ any signals that arrived while signals are blocked would be
pending

@ upon unblock, signal handler will run as usual

@ signal is only blocked temporarily (postponed)

Race conditions
feYelel)

@ Shell lab note
@ Race conditions

© System Level 1/0
@ Unix I/0
@ Files
@ Opening and closing files
@ Metadata, sharing, and redirection
@ Standard I/O Functions
@ Applying what we know to Shell lab

System Level 1/0
°

What is a file?

o Computer: stores information

=

@ Files contain data

@ Files have different formats

—

o Files are organized in some way

System Level 1/0

®0000000

Overview of files in modern operating systems

m A Linux file is a sequence of m bytes:
" B,, By, ...,B, ..., B

m-1

m A Linux file is a sequence of m bytes:
* B,,B,,...,B,..,B

m-1
m Cool fact: All 1/0 devices are represented as files:

" /dev/sda2 (/usr disk partition)
= /dev/tty2 (terminal)

System Level 1/0
00000000

Overview of files in Unix

m Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/0:
® QOpening and closing files
= open()and close()
= Reading and writing a file
= read() and write ()
m Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/0:
= Opening and closing files
* open ()and close ()
= Reading and writing a file
= read() and write ()
= Changing the current file position (seek)
= indicates next offset into file to read or write

System Level 1/0
00800000

File Types

m Each file has a type indicating its role in the system
® Regular file: Contains arbitrary data
= Directory: Index for a related group of files
= Socket: For communicating with a process on another machine

m Each file has a type indicating its role in the system
= Regular file: Contains arbitrary data
= Directory: Index for a related group of files
® Socket: For communicating with a process on another machine

m Other file types beyond our scope
= Named pipes (FIFOs)
= Symbolic links
® Character and block devices

System Level 1/0

000e0000

Regular Files

m A regular file contains arbitrary data
m Applications often distinguish between text files and binary
files
= Text files are regular files with only ASCII or Unicode characters
= Binary files are everything else
= e.g., object files, JPEG images
= Kernel doesn’t know the difference!
m Text file is sequence of text lines
= Text line is sequence of chars terminated by newline char (‘\n’)
= Newline is 0xa, same as ASCII line feed character (LF)
m A regular file contains arbitrary data
m Applications often distinguish between text files and binary
files
= Text files are regular files with only ASCII or Unicode characters
= Binary files are everything else
= e.g., object files, JPEG images
= Kernel doesn’t know the difference!

System Level 1/0
00008000

Directories

m Directory consists of an array of links
® Each link maps a filename to a file
m Each directory contains at least two entries

= (dot)is alink to itself

® .. (dotdot)is a link to the parent directory in the directory
hierarchy (next slide)

m Directory consists of an array of links
= Each link maps a filename to a file
m Each directory contains at least two entries

= (dot)is alink to itself

= . (dot dot)is a link to the parent directory in the directory
hierarchy (next slide)

m Commands for manipulating directories
" mkdir:create empty directory

System Level 1/0
00000800

Directory Hierarchy

m All files are organized as a hierarchy anchored by root directory
named / (slash)

/
bin/ dev/ etc/ home/ usr/
bash ttyl group passwd droh/ bryant/ include/ bin/
hello.c stdio.h sys/ vim
unistd.h

m Kernel maintains current working directory (cwd) for each process
= Modified using the cd command

System Level 1/0
000000

m Locations of files in the hierarchy denoted by pathnames
= Absolute pathname starts with /' and denotes path from root
* /home/droh/hello.c
= Relative pathname denotes path from current working directory
* ../droh/hello.c

/ cwd: /home/bryant
bin/ dev/ etc/ home/ usr/
bash ttyl group passwd droh/ bryant/ include/ bin/
hello.c stdio.h sys/ vim
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
unistd.h

System Level 1/0
0000000

Opening files

m Opening a file informs the kernel that you are getting ready to
access that file

int f£d; /* file descriptor */

if ((fd = open("/etc/hosts", O _RDONLY)) < 0) {
perror ("open") ;
exit(1l);

m Returns a small identifying integer file descriptor
= fd == -1 indicates that an error occurred

m Each process created by a Linux shell begins life with three
open files associated with a terminal:
= (:standard input (stdin)
= 1]:standard output (stdout)
= 2:standard error (stderr)

System Level 1/0
@0000

Closing files

m Closing a file informs the kernel that you are finished
accessing that file

int £d; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror ("close") ;
exit(1);

m Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

m Moral: Always check return codes, even for seemingly
benign functions such as close ()

System Level 1/0
o

Reading files

m Reading a file copies bytes from the current file position to
memory, and then updates file position

char buf[512];
int £d; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror ("read") ;
exit(1);

m Returns number of bytes read from file £d into buf
® Returntype ssize_tissigned integer
" nbytes < 0 indicates that an error occurred

= Short counts (nbytes < sizeof (buf))are possible and are not
errors!

System Level 1/0
00000

Writing files

m Writing a file copies bytes from memory to the current file
position, and then updates current file position

char buf[512];
int f£d; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror ("write") ;
exit(1);

m Returns number of bytes written from buf to file £d
" nbytes < 0 indicates that an error occurred
= As with reads, short counts are possible and are not errors!

System Level 1/0
00000

Simple Unix 1/O example

m Copying stdin to stdout, one byte at a time

#include "csapp.h"

int main (void)

{

char c;

while (Read (STDIN_FILENO, &c, 1) !'= 0)
Write (STDOUT_FILENO, &c, 1);

exit (0) ;

System Level 1/0
0000®

@ Shell lab note
@ Race conditions

© System Level 1/0
@ Unix I/0
@ Files
@ Opening and closing files
@ Metadata, sharing, and redirection
@ Standard I/O Functions
@ Applying what we know to Shell lab

System Level 1/0
©0000000

File metadata

m Metadata is data about data, in this case file data
m Per-file metadata maintained by kernel

= accessed by users with the stat and £stat functions

/* Metadata returned by the stat and fstat functions */

struct stat {
dev_t st_dev; /* Device */
ino_t st_ino; /* inode */
mode_t st _mode; /* Protection and file type */
nlink t st _nlink; /* Number of hard links */
uid t st _uid; /* User ID of owner */
gid_t st _gid; /* Group ID of owner */
dev_t st_rdev; /* Device type (if inode device) */
off t st_size; /* Total size, in bytes */
unsigned long st blksize; /* Blocksize for filesystem I/O */
unsigned long st blocks; /* Number of blocks allocated */
time t st_atime; /* Time of last access */
time_t st _mtime; /* Time of last modification */
time t st_ctime; /* Time of last change */

}i

System Level
000000

Example of accessing file metadata

linux> ./statcheck statcheck.c

int main (int argc, char **argv) type: regular, read: yes
{ linux> chmod 000 statcheck.c
struct stat stat; linux> ./statcheck statcheck.c
char *type, *readok; type: regular, read: no
linux> ./statcheck ..
Stat (argv[1l], &stat); type: directory, read: yes
if (S_ISREG(stat.st mode)) /* Determine file type */
type = "regular";
else if (S_ISDIR(stat.st_mode))
type = "directory";
else
type = "other";
if ((stat.st_mode & S_IRUSR)) /* Check read access */
readok = '"yes";
else
readok = "no";
printf ("type: %s, read: %s\n", type, readok);
exit(0) ;
} statcheck.c

System Level
00800000

How the Unix kernel represents open files

m Two descriptors referencing two distinct open files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (terminal)

stdin fdO — File access
stdout fd1] —7] File pos File size Info in
stderr fd2 File t stat
fent=1 ile type
fd3 SSSSh ol struct
fda ~| : 8
File B (disk)
] File access
File pos File size
refcnt=1 File t.ype

System Level 1/0
000e0000

File sharing

m Two distinct descriptors sharing the same disk file through
two distinct open file table entries
= E.g., Calling open twice with the same £ilename argument

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (disk)
stdin fdO — File access
stdout fd1 a 5 .
File size
stderr fd2 RilElES "
fd3 refcnt=1 File type
fda : 8
File B (disk)
File pos
refcnt=1

System Level 1/0
00008000

How processes share files: fork

m A child process inherits its parent’s open files
= Note: situation unchanged by exec functions (use £cntl to change)

m Before fork call:
Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (terminal)

stdin fdO / — File access
stdout fd1] " o
File size
stderr fd2 filslpes "
fd3 refent=1 File type
fda | ~] : i
File B (disk)
—1 | File access
File pos File size
refcnt=1 File t.ype

m A child process inherits its parent’s open files

System Level 1/0
00000800

1/O redirection

m Question: How does a shell implement 1/0 redirection?
linux> 1ls > foo.txt

m Answer: By calling the dup2 (01dfd, newfd) function
= Copies (per-process) descriptor table entry o1dfd to entry newfd

Descriptor table Descriptor table
before dup2 (4,1) after dup2 (4,1)
fdo fdo

fdi|a fdl|b

fd 2 fd 2

fd3 fd3

fdd | b fdd | b

System Level 1/0
00000080

|/O redirection example

m Step #1: open file to which stdout should be redirected
® Happens in child executing shell code, before exec

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A
stdin fdO / — File access
stdout fd1] " o
File size
stderr fd2 filslpes "
fd3 refent=1 File type
fda | ~] : i

File B
// File access

File size

File pos

refcnt=1 File t.ype

System Level 1/0
0000000e

@ Shell lab note
@ Race conditions

© System Level 1/0
@ Unix I/0
@ Files
@ Opening and closing files
@ Metadata, sharing, and redirection
@ Standard I/O Functions
@ Applying what we know to Shell lab

System Level 1/0
€00000

Standard I/O Functions

m The Cstandard library (1ibc. so) contains a collection of
higher-level standard I/0 functions
= Documented in Appendix B of K&R

m Examples of standard 1/0 functions:
® Opening and closing files (Eopen and fclose)
= Reading and writing bytes (fread and fwrite)
= Reading and writing text lines (Egets and fputs)
® Formatted reading and writing (Escanf and fprintf)

System Level 1/0
000000

Standard |1/O Streams

m Standard I/O models open files as streams
= Abstraction for a file descriptor and a buffer in memory

m C programs begin life with three open streams
(defined in stdio.h)
" stdin (standard input)
= stdout (standard output)
" stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf (stdout, "Hello, world\n");

}

System Level 1/0
000000

Buffered 1/O: Motivation

m Applications often read/write one character at a time
" getc, putc, ungetc
" gets, fgets
= Read line of text one character at a time, stopping at newline
m Implementing as Unix I/0 calls expensive
" readand write require Unix kernel calls
= >10,000 clock cycles
m Solution: Buffered read
= Use Unix read to grab block of bytes
= User input functions take one byte at a time from buffer
= Refill buffer when empty

Buffer | already read | unread | |

System Level 1/0
000000

Buffering in Standard 1/0

m Standard 1/0 functions use buffered 1/0

printf ("h");
printf("e") ;
printf ("1");

buf

printf("1");
printf("o");
printf ("\n");

[hlel

[1TolwWwl . T.]

\ fflush (stdout) ;

write(l, buf, 6);

m Buffer flushed to output fd on “\n”, call to ££1ush or
exit, orreturnfrommain.

System Level 1/0
000000

Standard |/O Buffering in Action

m You can see this buffering in action for yourself, using the
always fascinating Linux strace program:

#include <stdio.h> linux> strace ./hello
execve ("./hello", ["hello"], [/* ... */1).
int main() 000
{ write(l, "hello\n", 6) =6
printf ("h"); coo
printf("e"); exit group (0) =2

printf("1");
printf ("1") ;
printf("o") ;
printf ("\n");
fflush (stdout) ;
exit (0);

System Level 1/0
00000@

@ Shell lab note
@ Race conditions

© System Level 1/0
@ Unix I/0
@ Files
@ Opening and closing files
@ Metadata, sharing, and redirection
@ Standard I/O Functions
@ Applying what we know to Shell lab

System Level 1/0

Redirecting 1/0

Now, let's apply this in shell lab...

do_redirect (argv) function is started for you!
takes argv as input, will detect use of > and < for you

your job: given a filename, open a file with that name, use
dup2() to change either standard input or standart output to
the new file descriptor

after that you can simply call close() and you're done

@ test cases:

/bin/ls -1 tsh.c > testout
Does this write the output (stdout) of 1s into testout?
./myread 40 < tsh.c

Does it read input from tsh.c and use that as stdin?

System Level 1/0

Shell lab
Input/output redirection

You need to use:

open() and close() (see CS:APP3e 10.3 for usage)

(man 2 open in linux will give you even more detail)

(no read() or write() - that will happen later, after execve)
dup2() (see 10.9 for usage)

And tiny bit more:

declare an int to hold a file descriptor, use the correct entry in
argv

check system calls for errors! (return <0)

(file 1/0 may fail for many reasons, some are common, you
need to handle that)

tsh> ./myread < dasf

open() error: No such file or directory

System Level 1/0

	Shell lab note
	Race conditions
	System Level I/O
	Unix I/O
	Files
	Opening and closing files
	Metadata, sharing, and redirection
	Standard I/O Functions
	Applying what we know to Shell lab

