CSCI2467: Systems Programming Concepts

Slideset 7: Exceptional Control Flow
Source: CS:APP Chapter 8, Bryant & O'Hallaron

Course Instructors: Course Assistants:
Matthew Toups Saroj Duwal
Caitlin Boyce David McDonald
Spring 2020

&

THE UNIVERSITY of
NEW ORLEANS

DEPARTMENT OF
COMPUTER SCIENCE

Shell lab

@ Two due dates! Twol

Shell lab

Shell lab

@ Two due dates! Twol

@ You need a lot of time to write and debug your code

Shell lab

Shell lab

@ Two due dates! Two!
@ You need a lot of time to write and debug your code

@ Pace yourselves, the work can be split into distinct sections

Shell lab

Shell lab

@ Two due dates! Two!

@ You need a lot of time to write and debug your code

@ Pace yourselves, the work can be split into distinct sections
@ First due date is Friday March 13

Shell lab

Shell lab

Two due dates! Twol

Pace yourselves, the work can be split into distinct sections

°
@ You need a lot of time to write and debug your code
°
@ First due date is Friday March 13

You should be reading through lab writeup and Chapter 8 now

Shell lab

Shell lab

Two due dates! Twol

Pace yourselves, the work can be split into distinct sections

°
@ You need a lot of time to write and debug your code
°
@ First due date is Friday March 13

- You should be reading through lab writeup and Chapter 8 now
- The next few lectures will be very relevant

Shell lab

Your demo on Friday

@ Show eval() working
(however this will not be your final version)

@ Can your shell run simple programs?

Shell lab

Your demo on Friday

@ Show eval() working
(however this will not be your final version)
@ Can your shell run simple programs?
tsh> /bin/ps
(ps output)
tsh> /bin/ls -1
(long Is output)
tsh> ./myspin 4
(runs for 4 seconds then ends)

Shell lab

@ Start eval() with:

Shell lab

@ Start eval() with:

bg = parseline(cmdline, argv);

Shell lab

@ Start eval() with:
bg = parseline(cmdline, argv);

@ but before that, must declare variable names:

Shell lab

@ Start eval () with:
bg = parseline(cmdline, argv);
@ but before that, must declare variable names:

int bg; and char *argv[MAXARGS];

Shell lab

o Start eval () with:
bg = parseline(cmdline, argv);

@ but before that, must declare variable names:
int bg; and char *argv[MAXARGS];

@ No need to strcpy() in eval

Shell lab

@ Start eval() with:
bg = parseline(cmdline, argv);

@ but before that, must declare variable names:
int bg; and char *argv[MAXARGS];

@ No need to strcpy() in eval

@ In lieu of Fork() (capital F):

Shell lab

@ Start eval() with:
bg = parseline(cmdline, argv);

@ but before that, must declare variable names:
int bg; and char *argv[MAXARGS];

@ No need to strcpy() in eval

@ In lieu of Fork() (capital F):

See slide "System call error handling” (44) for example of
calling fork() which checks for error (-1)

Shell lab

@ Start eval() with:
bg = parseline(cmdline, argv);

@ but before that, must declare variable names:
int bg; and char *argv[MAXARGS];

@ No need to strcpy() in eval

@ In lieu of Fork() (capital F):

See slide "System call error handling” (44) for example of
calling fork() which checks for error (-1)

o After checking fork() for error case (< 1), do the
parent/child split

Shell lab

@ Start eval() with:
bg = parseline(cmdline, argv);

@ but before that, must declare variable names:
int bg; and char *argv[MAXARGS];

@ No need to strcpy() in eval

@ In lieu of Fork() (capital F):

See slide "System call error handling” (44) for example of
calling fork() which checks for error (-1)

o After checking fork() for error case (< 1), do the
parent/child split

(result of fork was saved in pid)

Shell lab

@ Start eval() with:
bg = parseline(cmdline, argv);

@ but before that, must declare variable names:
int bg; and char *argv[MAXARGS];

@ No need to strcpy() in eval

@ In lieu of Fork() (capital F):

See slide "System call error handling” (44) for example of
calling fork() which checks for error (-1)

o After checking fork() for error case (< 1), do the
parent/child split

(result of fork was saved in pid)

Use if (pid == 0) to begin child's code

Shell lab

What to expect Friday

@ We have many students so we need to do this quickly

Shell lab

What to expect Friday

@ We have many students so we need to do this quickly

@ Detailed help available after class

Shell lab

What to expect Friday

@ We have many students so we need to do this quickly
@ Detailed help available after class

@ Does your shell actually run other programs?

Shell lab

What to expect Friday

@ We have many students so we need to do this quickly
@ Detailed help available after class
@ Does your shell actually run other programs?

parseline(cmdline, argv)

Shell lab

What to expect Friday

@ We have many students so we need to do this quickly

@ Detailed help available after class

@ Does your shell actually run other programs?
parseline(cmdline, argv)

fork() and check for error (< 0)

Shell lab

What to expect Friday

@ We have many students so we need to do this quickly
@ Detailed help available after class
@ Does your shell actually run other programs?
parseline(cmdline, argv)
fork() and check for error (< 0)
if (pid == 0) to begin child-only code

Shell lab

What to expect Friday

@ We have many students so we need to do this quickly
@ Detailed help available after class
@ Does your shell actually run other programs?
parseline(cmdline, argv)
fork() and check for error (< 0)
if (pid == 0) to begin child-only code

execve(argv[0], argv, environ)

Shell lab

What to expect Friday

@ We have many students so we need to do this quickly
@ Detailed help available after class
@ Does your shell actually run other programs?
parseline(cmdline, argv)
fork() and check for error (< 0)
if (pid == 0) to begin child-only code
execve(argv([0], argv, environ)

(either executes, or prints “not found” error message)

Shell lab

Bottom line
not so bad!

@ Can be done in 10-20 lines of code, all in eval () function

o Correctness tests (make test05 and checktsh.py) will come
later

Shell lab

@ Shell lab

Q ECF, Signals and the command shell
@ Shells

@ Signals
@ Sending and receiving signals
@ Synchronization
@ Explicitly waiting for signals

ECF, Signals and the command shell
©0000

Linux process hierarchy

Login shell

Child

w w Note: you can view the
hierarchy using the Linux

pstree command

ECF, Signals and the command shell
0000

Login shell

What is a shell?

@ A shell is an application program that runs programs on behalf of the user.

bash GNU “Bourne-Again” Shell (1989)
tsh “tiny” shell (you, 2019)

int main()
char cmdline[MAXLINE]; /* command line x/

while (1) {
/* read x/
printf ("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))
exit(0);

/* evaluate x/
eval(cmdline);

} shellex.c

sh Orig. Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)

Execution is a
sequence of read/
evaluate steps

ECF, Signals and the command shell
00000

Simple shell eval function

¥oid eval(char *cmdline)

char *argv[MAXARGS]; /*x Argument list execve() x/

char buf[MAXLINE]; /* Holds modified command line x/

int bg; /* Should the job run in bg or fg? x/
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parsellne(buf argv);
(argv[@] = LL)
return; /* Ignore empty lines */

if (!builtin command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job x/
if (execve(argv[O], argv environ) < 0) {
prlntf("%s Command not found.\n", argv[0]);

exit(0);
}
/* Parent waits for foreground job to terminate x/
if (!bg) {
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error");
else . .
printf("%d %s", pid, cmdline);
return;

shellex.c .

}
ECF, Signals and the command shell
00080

Problem with simple shell example given?

@ Example shell given: correctly waits for and reaps foreground
jobs

@ But... what about background jobs?

- will become zombies when they terminate

- will never be reaped because shell (typically) will not terminate

- will create a memory leak that could eventually deplete
system memory

ECF, Signals and the command shell
0000e

Signals to the rescue!

@ Solution: use the tools of exceptional control flow!

- the OS kernel will interrupt regular processing to alert us
when a background process completes

- in Unix this alert mechanism is called a signal

ECF, Signals and the command shell
©00000000000000000000000

@ Shell lab

Q ECF, Signals and the command shell
@ Shells
@ Signals

ECF, Signals and the command shell
0@0000000000000000000000

m Asignal is a small message that notifies a process that an
event of some type has occurred in the system
= Akin to exceptions and interrupts

= Sent from the kernel (sometimes at the request of another process) to a
process

= Signal type is identified by small integer ID’s (1-30)
® Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
SIGINT Terminate User typed ctrl-c
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

ECF, Signals and the command shell
008000000000000000000000

Signal concepts: sending a signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:
= Kernel has detected a system event such as divide-by-zero (SIGFPE) or the
termination of a child process (SIGCHLD)
= Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process

ECF, Signals and the command shell
000000000000000000000000

Signal concepts: receiving a signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

m Some possible ways to react:
® |gnore the signal (do nothing)
= Terminate the process (with optional core dump)
® Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received (2) Control passes
by process I to signal handler
urr

next

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

ECF, Signals and the command shell
000080000000000000000000

Signal concepts: pending and blocked signals

m Asignal is pending if sent but not yet received
®= There can be at most one pending signal of any particular type
® |mportant: Signals are not queued

= |If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be delivered, but will not be received until the signal
is unblocked

m A pending signal is received at most once

ECF, Signals and the command shell
000000000000000000000000

Signal concepts: pending/blocked bits

m Kernel maintains pending and blocked bit vectors in the
context of each process
®* pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

® blocked: represents the set of blocked signals

= Can be set and cleared by using the sigprocmask function
= Also referred to as the signal mask.

ECF, Signals and the command shell
000000800000000000000000

Sending signals: process groups

Every process belongs to exactly one process group

pid=10
pgid=10

pid=20 id=40
pgid=20 =

Pgid=40

Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
Pgid=20 pgid=20 Return process group of current process
Foreground setpgid ()

process group 20 Change process group of a process (see

text for details)

ECF, Signals and the command shell

000000 000000000000 000

Sending signals with /bin/kill

m /bin/kill program
sends arbitrary signaltoa 1inux> ./forks 16

Childl: pid=24818 pgrp=24817
process or process group Child2: pid=24819 pgrp=24817

linux> ps
m Examples PID TTY TIME CMD

" /bin/kill -9 24818 24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks
Send SIGKILL to process 24818 24819 pts/2 00:00-02 Forks

24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps

" /bin/kill -9 -24817

Send SIGKILL to every process PID TTY TIME CMD

in process group 24817 24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

ECF, Signals and the command shell
00000000 8000000000000000

Sending signals from the keyboard

m Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group.
= SIGINT — default action is to terminate each process
= S|GTSTP — default action is to stop (suspend) each process

pid=20

pgid=20 pid=40

Pgid=40

Background Background
process group 32 process group 40

pid=21 pid=22
Pgid=20 Pgid=20
Foreground

process group 20

ECF, Signals and the command shell

0000000008000 00000000000

Example of ctrl-c and ctrl-z

Sending SIGINT and SIGTSTP

Parent: pid=58227 pgrp=58227 STAT (process state) Legend:
Child: pid=58232 pgrp=58227
A
[11+ Stopped ./forks 17 First letter:
csadmin@systems -lab:~/2467$ ps w S: sleeping
PID TTY STAT TIME COMMAND T:“opped
58227 pts/1 T 0:00 ./forks 17 R: running
58232 pts/1 T 0:00 ./forks 17
66587 pts/1 R+ 0:00 ps w
98531 pts/1 Ss 0:00 -bash Second letter:
csadmin@systems -lab:~/2467$ fg %1 s: session leader
./forks 17 +: foreground proc group
~C
csadmin@systems -lab:~/2467$ ps w See “man ps” for more
PID TTY STAT TIME COMMAND details
96604 pts/1 R+ 0:00 ps w
98531 pts/1 Ss 0:00 -bash

ECF, Signals and the command shell
000000000080000000000000

Sending signals with the kill function

int
int

for

for

for

pid_

void forkl12()
{

t pid[N];
a;
child_status;

(1 =0; i < N; i++)

if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */
while(1)

H

(i =0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

(1=0; i< N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

forks.c

ECF, Signals and the command shell
00000000000e000000000000

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

Process A

user code
kernel code } context switch
Time user code

kernel code } context switch

user code

ECF, Signals and the command shell
000000000000800000000000

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked
= The set of pending nonblocked signals for process p

m If (pnb == 0)
® Pass control to next instruction in the logical flow for p
m Else

® Choose least nonzero bit k in pnb and force process p to receive
signal k

= The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb
® Pass control to next instruction in logical flow for p

ECF, Signals and the command shell
0000000000000e0000000000

Default actions

m Each signal type has a predefined default action, which is
one of:
® The process terminates
= The process terminates and dumps core
® The process stops until restarted by a SIGCONT signal
® The process ignores the signal

ECF, Signals and the command shell
00000000000000e000000000

Installing signal handlers

m The signal function modifies the default action associated
with the receipt of signal signum:
*" handler_t *signal(int signum, handler_t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
= Otherwise, handler is the address of a user-level signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted by
receipt of the signal

ECF, Signals and the command shell
000000000000000800000000

Nested signal handlers

m Handlers can be interrupted by other handlers

Main program Handler S Handler T

(2) Control passes
(1) Program I} to handler S

curr

catches signal s (4) Control passes
(3) Program to handler T
(7) Main program Lext catches signal t
resumes
(5) Handler T

ﬁ)t ":‘;’1';‘1’:’ s returns to
maliln handler S
program

ECF, Signals and the command shell
0000000000000000e0000000

Blocking and unblocking signals

m Implicit blocking mechanism
= Kernel blocks any pending signals of type currently being handled.
= E.g., ASIGINT handler can’t be interrupted by another SIGINT

m Explicit blocking and unblocking mechanism

" sigprocmask function

m Supporting functions
" sigemptyset — Create empty set
" sigfillset —Add everysignal number to set
" sigaddset —Add signal number to set
" sigdelset — Delete signal number from set

ECF, Signals and the command shell
00000000000000000e000000

Temporarily blocking signals
Example using sigprocmask ()

sigset_t mask, prev_mask;

Sigemptyset(&mask) ;
Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

E /* Code region that will not be interrupted by SIGINT x/

/* Restore previous blocked set, unblocking SIGINT x/
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

ECF, Signals and the command shell
000000000000000000e00000

Synchronizing flows to avoid races

m Simple shell with a subtle synchronization error because it
assumes parent runs before child.

int main(int argc, char xxargv)
{
int pid;
sigset_t mask_all, prev_all;
Sigfillset(&mask_all);
Signal (SIGCHLD, handler);
initjobs(); /* Initialize the job list %/
while (1) {
if ((pid = Fork()) == 0) { /% Child %/
Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /x Parent x/
addjob(pid); /*x Add the child to the job list x*/
Sigprocmask(SIG_SETMASK, &prev_all, NULL);
}
exit(0);
} procmaskl.c

ECF, Signals and the command shell
0000000000000000000e0000

Synchronizing flows to avoid races

m SIGCHLD handler for a simple shell

void handler(int sig)
{
int olderrno = errno;
sigset_t mask_all, prev_all;
pid_t pid;
Sigfillset(&mask_all);
while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child %/
Sigprocmask (SIG_BLOCK, &mask_all, &prev_all);
deletejob(pid); /* Delete the child from the job list */
Sigprocmask (SIG_SETMASK, &prev_all, NULL);
if (errno != ECHILD)
Sio_error("waitpid error");
errno = olderrno;
} procmaskl.c

ECF, Signals and the command shell
00000000000000000000e000

Corrected shell program without race condition

int main(int argc, char xxargv)
{
int pid;
sigset_t mask_all, mask_one, prev_one;
Sigfillset(&mask_all);
Sigemptyset (&mask_one) ;
Sigaddset (&mask_one, SIGCHLD);
Signal (SIGCHLD, handler);
initjobs(); /* Initialize the job list x/
while (1) {
Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD x/
if ((pid = Fork()) == @) { /* Child process */
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD x*/
Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process x/
addjob(pid); /% Add the child to the job list x/
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /% Unblock SIGCHLD x/
}
exit(0);
} procmask2.c

ECF, Signals and the command shell
000000000000000000000e00

Explicitly waiting for signals

m Handlers for program explicitly waiting for SIGCHLD to arrive.

volatile sig_atomic_t pid;
void sigchld_handler(int s)

int olderrno = errno;
pid = Waitpid(-1, NULL, @); /% Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint_handler(int s)
{
}

waitforsignal.c

ECF, Signals and the command shell
0000000000000000000000

Explicitly waiting for signals

. T Similar to a shell waiting
int main(int argc, char *xargv) { .
sigset_t mask, prev; for a foreground job to
Signal(SIGCHLD, sigchld_handler); terminate.
Signal(SIGINT, sigint_handler);
Sigemptyset (&mask) ;
Sigaddset (&mask, SIGCHLD);

while (1) {
Sigprocmask(SIG_BLOCK, &mask, &prev); /x Block SIGCHLD */
if (Fork() == @) /% Child */
exit(0);
/* Parent x/
pid = 0;
Sigprocmask(SIG_SETMASK, &prev, NULL); /% Unblock SIGCHLD x/

/* Wait for SIGCHLD to be received (wasteful!) x/
while (!pid)

/* Do some work after receiving SIGCHLD x/
printf(".");

}
exit(0);
} waitforsignal.c

ECF, Signals and the command shell
00000000000000000000000e

	Shell lab
	ECF, Signals and the command shell
	Shells
	Signals

