
CSCI2467: Systems Programming Concepts
Slideset 5: Examining Programs at the Machine Level

Source: CS:APP Chapter 3, Bryant & O’Hallaron

Course Instructors:

Matthew Toups
Caitlin Boyce

Course Assistants:

Saroj Duwal
David McDonald

Spring 2020

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Announcements

copying code or comments without citation from
websites/classmates/github/stackexchange/etc is plagiarism

copying with a citation but not explained in your own words
will receive no credit, but may save you from disciplinary
proceedings

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

datalab is done!

L Bomblab begins!

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Announcements

Bomblab writeup passed out today (due Thursday September
26)

don’t explode your bomb!

Scoreboard on AutoLab is automatically updated (no handing
in)

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Class updates
1 History of Intel CPU architecture

Intel processor “family”
The move to 64-bit wide architecture
Summary

2 C, assembly, and machine code
Definitions
Compiling C
Disassembling / debugging
Registers

3 Arithmetic & Logical operations
Instructions
Example

4 Memory and addressing
Pointers!
Call-by-value
Swapping by reference

5 Bomblab
Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Intel x86 Processors

Dominate laptop/desktop/server market today

(but not mobile)

Evolutionary design

- Backwards compatible all the way back to 8086 (1978)

- Added more features over time

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Intel x86 Processors

Complex instruction set computer (CISC)

- Many different instructions with many different formats

- ... but, only small subset encountered with most programs

- Hard to match performance of Reduced Instruction Set
Computer (RISC)

- ... but Intel has done just that

(in terms of speed, less so for low power)

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Intel x86 Processors

Name Date Transistors MHz Notes

8086 1978 29k 5-10 first 16-bit Intel CPU, basis

for IBM PC & DOS. 1MB

address space

386 1985 275k 16-33 first 32-bit Intel CPU, re-

ferred to as IA32. Added

“flat addressing” – capable

of running Unix OSes

Pentium 4E 2004 125M 2800-3800 First 64-bit Intel x86
CPU (x86-64)

Core 2 2006 291M 1060-3500 First multi-core Intel
CPU

Core i7 2008 731M 1700-3900 4 cores per CPU
Xeon E5-2697v2 2013 4.3B 2700 12 cores per CPU
Xeon E5-2699v4 2016 7.2B 2200 22 cores per CPU

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Intel x86 processor evolution
Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel x86 Processors, cont.

 Machine Evolution
▪ 386 1985 0.3M

▪ Pentium 1993 3.1M

▪ Pentium/MMX 1997 4.5M

▪ PentiumPro 1995 6.5M

▪ Pentium III 1999 8.2M

▪ Pentium 4 2000 42M

▪ Core 2 Duo 2006 291M

▪ Core i7 2008 731M

▪ Core i7 Skylake 2015 1.9B

 Added Features
▪ Instructions to support multimedia operations

▪ Instructions to enable more efficient conditional operations

▪ Transition from 32 bits to 64 bits

▪ More cores

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Intel x86 processors, process technology
Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel x86 Processors, cont.
 Past Generations

▪ 1st Pentium Pro 1995 600 nm

▪ 1st Pentium III 1999 250 nm

▪ 1st Pentium 4 2000 180 nm

▪ 1st Core 2 Duo 2006 65 nm

 Recent & Upcoming Generations
1. Nehalem 2008 45 nm

2. Sandy Bridge 2011 32 nm

3. Ivy Bridge 2012 22 nm

4. Haswell 2013 22 nm

5. Broadwell 2014 14 nm

6. Skylake 2015 14 nm

7. Kaby Lake 2016 14 nm

8. Coffee Lake 2017 14 nm

▪ Cannon Lake 2019? 10 nm

Process technology

Process technology dimension
= width of narrowest wires
(10 nm ≈ 100 atoms wide)

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

2018 CPU State of the Art
Intel “Coffee Lake” microarchitecture

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2018 State of the Art: Coffee Lake

 Mobile Model: Core i7
▪ 2.2-3.2 GHz

▪ 45 W

 Server Model: Xeon E
▪ Integrated graphics

▪ Multi-socket enabled

▪ 3.3-3.8 GHz

▪ 80-95 W

 Desktop Model: Core i7
▪ Integrated graphics

▪ 2.4-4.0 GHz

▪ 35-95 W

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

x86 clones: Advanced Micro Devices (AMD)

Historically AMD has followed just behind Intel

- a little slower, a lot cheaper

Then in early 2000s ...

- AMD recruited top designers from Digital Equipment Corp
and other defunct CPU makers

- Built Opteron: tough competitor to Pentium 4

- Developed x86-64 extension (64 bit x86)

In recent Years...

- Intel got its act together, retook the lead

- AMD returned to 2nd place . . . until recently?

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

64-bit history

2001: Intel attempts radical shift from IA32 to IA64

- Totally different architecture (Itanium)

- Executes IA32 code only as legacy

- Performance disappointing

2003: AMD steps in with evolutionary solution

- x86-64 (also known as AMD64)

Intel felt obligated to focus on IA64

- Hard to admit mistake or that AMD is better

2004: Intel announces EM64T extension to IA32

- Extended Memory 64-bit technology

- Almost identical to amd64!

Since then: all but low-end x86 CPUs support x86-64

- but lots of code still runs in 32-bit mode

- 32-bit CPUs still very widely used (embedded, mobile)

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Coverage in CSCI2467

x86-64 is now standard

CS:APP 3rd edition focuses on x86-64

- (web asides on IA32 available)

We will only cover x86-64

(extension of x86, will be easy for 2450 students to pick up)

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Class updates

1 History of Intel CPU architecture

2 C, assembly, and machine code
Definitions
Compiling C
Disassembling / debugging
Registers

3 Arithmetic & Logical operations

4 Memory and addressing

5 Bomblab

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Some definitions

Architecture (also ISA: instruction set architecture)

The parts of a processor design that one needs to understand
to write assembly/machine code.

- Examples: instruction set specification, registers

Microarchitecture

Implementation of the architecture.

- Examples: cache sizes and core frequency

Code forms:

- Machine code: byte-level programs that a processor executes

- Assembly code: a text representation of machine code

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Some definitions

Example Instruction Set Architectures (ISAs):

- Intel:

x86 (IA32)

Itanium (64-bit, never mass produced)

x86-64 (64-bit, created by AMD and copied by Intel)

- ARM (Acorn RISC Machine):

used in almost all mobile phones

designed for low power consumption

- RISC V (origins: UC Berkeley)

New open-source ISA

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Assembly/Machine Code view
Carnegie Mellon

12 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

CPU	

Assembly/Machine	
 Code	
 View	

Programmer-­‐Visible	
 State	

§  PC:	
 Program	
 counter	

§  Address	
 of	
 next	
 instruc�on	

§  Called	
 “RIP”	
 (x86-­‐64)	

§  Register	
 file	

§  Heavily	
 used	
 program	
 data	

§  Condi�on	
 codes	

§  Store	
 status	
 informa�on	
 about	
 most	

recent	
 arithme�c	
 or	
 logical	
 opera�on	

§  Used	
 for	
 condi�onal	
 branching	

PC	

Registers	

Memory	

Code	

Data	

Stack	

Addresses	

Data	

Instruc�ons	
 Condi�on	

Codes	

§ Memory	

§  Byte	
 addressable	
 array	

§  Code	
 and	
 user	
 data	

§  Stack	
 to	
 support	
 procedures	

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Turning C into Object Code Carnegie Mellon

13 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

text	

text	

binary	

binary	

Compiler	
 (gcc –Og -S)	

Assembler	
 (gcc	
 or	
 as)	

Linker	
 (gcc	
 or ld)	

C	
 program	
 (p1.c p2.c)	

Asm	
 program	
 (p1.s p2.s)	

Object	
 program	
 (p1.o p2.o)	

Executable	
 program	
 (p)	

Sta�c	
 libraries	

(.a)	

Turning	
 C	
 into	
 Object	
 Code	

§  Code	
 in	
 files	
 	
 p1.c p2.c
§  Compile	
 with	
 command:	
 	
 gcc –Og p1.c p2.c -o p

§ Use	
 basic	
 op�miza�ons	
 (-Og)	
 [New	
 to	
 recent	
 versions	
 of	
 GCC]	

§  Put	
 resul�ng	
 binary	
 in	
 file	
 p	

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Compiling into Assembly

long plus (long x, long y);

void sumstore(long x,long y,

long *dest)

{

long t = plus(x,y);

*dest = t;

}

s u ms t o r e :
push r b x
mov rbx , r d x
c a l l p l u s
mov QWORD PTR [r b x] , r a x
pop r b x
r e t

Using:
gcc -Og -S sum.c -masm=intel

Will get very different results on other systems: Mac OS X,
Windows, other compilers, even gcc with other flags

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Assembly characteristics: data types

“integer” data of 1,2,4, or 8 bytes

- data values

- addresses (untyped pointers)

Floating point data of 4, 8, or 10 bytes

Code: byte sequences encoding series of instructions

No aggregate types such as arrays or structures

- Just contiguously allocated bytes in memory

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Assembly characteristics: operations

Operations are assembly instructions, which can:

Perform arithmetic function on register or memory data

Transfer data between memory and register

- load data from memory into register

- store register data into memory

Transfer control

- unconditional jumps to/from procedures

- conditional branches

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Object code (binary)

400532:
0 x53
0 x48
0 x89
0 xd3
0 xe8
0 x f 2
0 x f f
0 x f f
0 x f f
0 x48
0 x89
0 x03
0 x5b
0 xc3

Assembler:

- translates .s into .o

- binary encoding of each instruction

- nearly-complete image of executable program

- missing linkages between code in different files

Linker:

- resolves references between files

- combined with static run-time libraries

(e.g. printf)

- some libraries are dynamically linked

(linking occurs when program begins execution)

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Disassembling object code

Disassembler: objdump -M intel -d sum

useful tool for examining object code

analyzes bit pattern of series of instructions

produces approximate rendition of assembly code

can be run on either a.out (complete executable) or .o file

0000000000400532 <sumstore >:
400532: 53 push r b x
400533: 48 89 d3 mov rbx , r d x
400536: e8 f 2 f f f f f f c a l l 40052 d <p l u s>
40053 b : 48 89 03 mov QWORD PTR [r b x] , r a x
40053 e : 5b pop r b x
40053 f : c3 r e t

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Machine instruction example

∗dest = t; C code: store value t where
designated by dest

mov QWORD PTR [rbx],rax Assembly:

move 8-byte value to
memory (“quad word”)

Operands:

t: register rax

dest: register rbx

*dest: memory at [rbx]

40053b: 48 89 03 Object code: 3-byte instruction
stored at address 0x40053b

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Disassembly with gdb

gdb commands:

(gdb) disassemble sumstore

Dump o f a s s e m b l e r code f o r f u n c t i o n s u m s to r e :
0 x0000000000400532 <+0>: push r b x
0 x0000000000400533 <+1>: mov rbx , r d x
0 x0000000000400536 <+4>: c a l l 0 x40052d <p l u s>
0 x000000000040053b <+9>: mov QWORD PTR [r b x] , r a x
0 x000000000040053e <+12>: pop r b x
0 x000000000040053f <+13>: r e t

Examine the 14 bytes starting at location sumstore:

(gdb) x/14xb sumstore

0x400532 <sumstore>: 0 x53 0x48 0x89 0xd3 0 xe8 0 x f2 0 x f f 0 x f f
0 x40053a <sumstore+8>: 0 x f f 0 x48 0x89 0x03 0x5b 0 xc3

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

GDB
Crucial tool for our labs! See CSAPP3e for examples (p.280 Figure 3.39)

166 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Command Effect
Starting and Stopping

quit Exit GDB

run Run your program (give command line arguments here)
kill Stop your program

Breakpoints
break sum Set breakpoint at entry to functionsum
break *0x80483c3 Set breakpoint at address0x80483c3
delete 1 Delete breakpoint 1
delete Delete all breakpoints

Execution
stepi Execute one instruction
stepi 4 Execute four instructions
nexti Like stepi , but proceed through function calls
continue Resume execution
finish Run until current function returns

Examining code
disas Disassemble current function
disas sum Disassemble function sum
disas 0x80483b7 Disassemble function around address0x80483b7
disas 0x80483b7 0x80483c7 Disassemble code within specified address range
print /x $eip Print program counter in hex

Examining data
print $eax Print contents of%eax in decimal
print /x $eax Print contents of%eax in hex
print /t $eax Print contents of%eax in binary
print 0x100 Print decimal representation of0x100
print /x 555 Print hex representation of 555
print /x ($ebp+8) Print contents of%ebpplus 8 in hex
print *(int *) 0xbffff890 Print integer at address0xbffff890
print *(int *) ($ebp+8) Print integer at address%ebp+ 8
x/2w 0xbffff890 Examine two (4-byte) words starting at address0xbffff890
x/20b sum Examine first 20 bytes of functionsum

Useful information
info frame Information about current stack frame
info registers Values of all the registers
help Get information aboutGDB

Figure 3.26:Example GDB Commands.These examples illustrate some of the waysGDB supports debug-
ging of machine-level programs.

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

What can be disassembled?

Anything that can be interpreted as executable code

disassembler examines bytes and reconstructs assembly

Carnegie Mellon

21 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

What	
 Can	
 be	
 Disassembled?	

¢  Anything	
 that	
 can	
 be	
 interpreted	
 as	
 executable	
 code	

¢  Disassembler	
 examines	
 bytes	
 and	
 reconstructs	
 assembly	
 source	

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

Reverse	
 engineering	
 forbidden	
 by	

Microso�	
 End	
 User	
 License	
 Agreement	

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Legacy: IA32 (x86) registers

Carnegie Mellon

24 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

Some	
 History:	
 IA32	
 Registers	

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-­‐bit	
 virtual	
 registers	

(backwards	
 compa�bility)	

ge
ne
ra
l	
 p
ur
po
se
	

accumulate

counter

data

base

source
index

destination
index

stack
pointer

base
pointer

Origin	

(mostly	
 obsolete)	

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

x86-64 integer registers

introducing: 64-bits wide, and 8 additional general purpose registers

Carnegie Mellon

23 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

%rsp

x86-­‐64	
 Integer	
 Registers	

§  Can	
 reference	
 low-­‐order	
 4	
 bytes	
 (also	
 low-­‐order	
 1	
 &	
 2	
 bytes)	

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Class updates

1 History of Intel CPU architecture

2 C, assembly, and machine code

3 Arithmetic & Logical operations
Instructions
Example

4 Memory and addressing

5 Bomblab

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Arithemetic operations
Two operand instructions

Pay attention to order of operands

No distinction between signed & unsigned. (why not?)

Format Operands Computation

add dest,src dest = dest + src
sub dest,src dest = dest - src
imul dest,src dest = dest * src
sal dest,src dest = dest << src (also shl)
sar dest,src dest = dest >> src (arithmetic)
shr dest,src dest = dest >> src (logical)
xor dest,src dest = dest ∧ src
and dest,src dest = dest & src
or dest,src dest = dest | src

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Arithemetic operations
One operand instructions

Format Operand Computation

inc dest dest = dest + 1
dec dest dest = dest - 1
neg dest dest = – dest
not dest dest = ˜dest

See CSAPP3e for more on these operations.

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

An arithmetic example
How would we write this in x86-64 assembly?

Assume x is stored in register rdi:

long m12(long x)

{

return x*12;

}

Perhaps this?

imul rax , rdi , 12

Nope: This is not how a compiler “thinks”!

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Address computation instruction

lea dst src

- src is address mode expression

- set dst to address denoted by expression

Uses:

- Computing addresses without a memory reference

(e.g. translation of p = & x [i];)

- Computing arithmetic expressions of the form x + k ∗ y
k = 1, 2, 4, or 8

lea rax , [rdi+rdi *2] # rax <- x+x*2

sal rax , 2 # rax <- rax <<2

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Address computation instruction

Compilers love lea instruction

Fast way to compute x + k ∗ y and similar

long m12(long x)

{

return x*12;

}

Compiles to:

m12:

lea rax , [rdi+rdi*2] # rax <- x+x*2

sal rax , 2 # rax <- rax <<2

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Arithmetic expression example

long arith

(long x,long y,long z)

{

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

return rval;

}

arith:

lea rax , [rdi+rsi]

add rax , rdx

lea rcx , [rsi+rsi *2]

sal rcx , 4

lea rcx , [rdi +4+ rcx]

imul rax , rcx

ret

Interesting instructions:

lea: address computation

sal : shift left

imul: multiplication

(only used once!)

arith:

lea rax , [rdi+rsi] # t1

add rax , rdx # t2

lea rcx , [rsi+rsi *2]

sal rcx , 4 # t4

lea rcx , [rdi +4+ rcx]# t5

imul rax , rcx # rval

ret

Register Use

rdi argument x
rsi argument y
rdx argument z
rax t1, t2, rval
rcx t4, t5

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Machine Programming I: Summary

History of Intel processors and architectures

- Evolutionary design leads to many quirks and artifacts

C, assembly, machine instructions

- New forms of visible state: program counter, registers, ...

- Compiler must transform statements, expressions, procedures
into low-level instruction sequences

Assembly basics: registers, operands, move

Arithmetic

- C compiler will figure out different instruction combinations to
carry out computation

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Class updates
1 History of Intel CPU architecture

Intel processor “family”
The move to 64-bit wide architecture
Summary

2 C, assembly, and machine code
Definitions
Compiling C
Disassembling / debugging
Registers

3 Arithmetic & Logical operations
Instructions
Example

4 Memory and addressing
Pointers!
Call-by-value
Swapping by reference

5 Bomblab
Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

C Code

int x;
int *p;

x = 99; //holds a value
p = &x; //holds an address of a value

Memory

M2

M1

M1

99

x

*p

&x &p

99

XXXXXX XX

*x

Segmentation Fault
(hopefully)

Pointers in C

p

Operator Function

& “address of”

C Code

int x;
int *p;

x = 99; //holds a value
p = &x; //holds an address of a value

Memory

M2

M1

M1

99

x

*p

&x &p

99

XXXXXX XX

*x

Segmentation Fault
(hopefully)

Pointers in C

p

C Code

int x;
int *p;

x = 99; //holds a value
p = &x; //holds an address of a value

Memory

M2

M1

M1

99

x

*p

&x &p

99

XXXXXX XX

*x

Segmentation Fault
(hopefully)

Pointers in C

p

Source: wchapman.net

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

http://wchapman.net/files/Pointers%20in%20C.pdf

C pointer syntax

Operator Function

* pointer / dereference
& “address of”

int x = 1, y = 2, z[10];

int *ip; /* ip is a pointer to int */

ip = &x; /* ip now points to x */

y = *ip; /* y is now 1 */

ip = 0; / x is now 0 */

ip = &z[0]; /* ip now points to z[0] */

Source: K&R Chapter 5

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Pointers illustrated

Imagine memory as a long block of boxes that store data. Each
box is labeled with an address. A pointer is a variable that holds
a particular address. An array is a group of contiguous boxes that
can be accessed by their index values.

Here we declare p and q as pointers that will hold the addresses of
int variables, and x as an ordinary int variable.

This line defines an array that can store four int values.
Now, a points to the first index of this array.

(None of the variables have been assigned values yet, so they contain

“garbage” – whatever had been stored in these blocks of memory before)

Line 1 requests 4 bytes (enough for one int) of memory using
malloc(), and stores the location of that memory in p (cast to
int * to indicate the type of the data being pointed to).

Line 2 looks up the address of x and stores it in q.

Source: CS Illustrated

We can access the data referenced by a pointer by dereferencing
it using the *. Dereferencing looks inside the memory (box) at the
location (address) stored by the pointer.

Here we put values 1, 2, and 3 into boxes pointed to by p, q, and a.

Source: CS Illustrated

Note: this illustration assumes 32-bit (4-byte) pointers

Source: CS Illustrated

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

http://csillustrated.berkeley.edu/PDFs/handouts/pointers-and-arrays-handout.pdf
http://csillustrated.berkeley.edu/PDFs/handouts/pointers-and-arrays-handout.pdf
http://csillustrated.berkeley.edu/PDFs/handouts/pointers-and-arrays-handout.pdf

C pointer syntax

Operator Function

* pointer / dereference
& “address of”

int x = 1, y = 2, z[10];

int *ip; /* ip is a pointer to int */

ip = &x; /* ip now points to x */

y = *ip; /* y is now 1 */

ip = 0; / x is now 0 */

ip = &z[0]; /* ip now points to z[0] */

Source: K&R Chapter 5

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

C pointer syntax

C uses “call-by-value” semantics for function calls

void swap(int x, int y)

{

int temp;

temp = x;

x = y;

y = temp;

}

int a=123,b=456;

swap(a, b);

This function won’t swap
a and b, only copies of the
values.

Source: K&R Section 5.2

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Addressing example

void swap (long *xp ,

long *yp)

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

Called with:

long a=123,b=456;

swap(&a, &b);

swap:

mov rax , QWORD PTR [rdi]

mov rdx , QWORD PTR [rsi]

mov QWORD PTR [rdi], rdx

mov QWORD PTR [rsi], rax

(or in the other “flavor” asm)

swap :
movq (% r d i) , %r a x
movq (% r s i) , %r d x
movq %rdx , (% r d i)
movq %rax , (% r s i)
r e t

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Understanding swap() Carnegie Mellon

29 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

%rdi

%rsi

%rax

%rdx

Understanding	
 Swap()	

void swap
 (long *xp, long *yp)
{
 long t0 = *xp;
 long t1 = *yp;
 *xp = t1;
 *yp = t0;
}

Memory	

Register 	
 Value	

%rdi xp
%rsi yp
%rax t0
%rdx t1

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

Registers	

Register Value
rdi xp
rsi yp
rax t0
rdx t1

mov rax , QWORD PTR [r d i]
mov rdx , QWORD PTR [r s i]
mov QWORD PTR [r d i] , r d x
mov QWORD PTR [r s i] , r a x

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Understanding swap()

Carnegie Mellon

30 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

Understanding	
 Swap()	

123

456	

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers	

Memory	

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

0x120

0x118

0x110

0x108

0x100

Address	

Carnegie Mellon

31 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

Understanding	
 Swap()	

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

Registers	

Memory	

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

0x120

0x118

0x110

0x108

0x100

Address	

Carnegie Mellon

32 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

Understanding	
 Swap()	

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers	

Memory	

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

0x120

0x118

0x110

0x108

0x100

Address	

Carnegie Mellon

33 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

Understanding	
 Swap()	

456

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers	

Memory	

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

0x120

0x118

0x110

0x108

0x100

Address	

Carnegie Mellon

34 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

Understanding	
 Swap()	

456

123	

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers	

Memory	

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

0x120

0x118

0x110

0x108

0x100

Address	

swap:

mov rax , QWORD PTR [rdi]

mov rdx , QWORD PTR [rsi]

mov QWORD PTR [rdi], rdx

mov QWORD PTR [rsi], rax

swap:

mov rax , QWORD PTR [rdi]

mov rdx , QWORD PTR [rsi]

mov QWORD PTR [rdi], rdx

mov QWORD PTR [rsi], rax

swap:

mov rax , QWORD PTR [rdi]

mov rdx , QWORD PTR [rsi]

mov QWORD PTR [rdi], rdx

mov QWORD PTR [rsi], rax

swap:

mov rax , QWORD PTR [rdi]

mov rdx , QWORD PTR [rsi]

mov QWORD PTR [rdi], rdx

mov QWORD PTR [rsi], rax

swap:

mov rax , QWORD PTR [rdi]

mov rdx , QWORD PTR [rsi]

mov QWORD PTR [rdi], rdx

mov QWORD PTR [rsi], rax

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

Class updates
1 History of Intel CPU architecture

Intel processor “family”
The move to 64-bit wide architecture
Summary

2 C, assembly, and machine code
Definitions
Compiling C
Disassembling / debugging
Registers

3 Arithmetic & Logical operations
Instructions
Example

4 Memory and addressing
Pointers!
Call-by-value
Swapping by reference

5 Bomblab
Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

lab warmup

get sum.c from 2467 course page

- (go to schedule, link to example code for today)

compile with gcc sum.c

- Then run: objdump −d a.out −M intel

- ignore noise at beginning, look for sumstore and plus

compile with optimizations such as gcc −Og and −O3 ,
compare

launch GNU debugger: gdb ./a.out

breakpoint on sumstore...

commands to try: run, disassemble, x, nexti

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

bomblab

download bomblab from on campus into homedir on
systems-lab

either use classroom terminals, or systems-lab-web

untar, examine with objdump

open with gdb

Class updates History of Intel CPU architecture C, assembly, and machine code Arithmetic & Logical operations Memory and addressing Bomblab

	Class updates
	History of Intel CPU architecture
	Intel processor ``family''
	The move to 64-bit wide architecture
	Summary

	C, assembly, and machine code
	Definitions
	Compiling C
	Disassembling / debugging
	Registers

	Arithmetic & Logical operations
	Instructions
	Example

	Memory and addressing
	Pointers!
	Call-by-value
	Swapping by reference

	Bomblab

