
CSCI2467: Systems Programming Concepts
Slideset 2: Information as Data

Source: CS:APP Bryant & O’Hallaron (Section 2.1)

Course Instructors:

Matthew Toups
Caitlin Boyce

Course Assistants:

Saroj Duwal
David McDonald

Spring 2020

Course notes Preview Bits and Bytes Up next: Integer Values

Course updates

introlab due tonight, 11:59pm

- Autolab handles due date, grace days, late penalties

datalab out today - will be more challenging and time consuming

Due in two weeks (Wednesday February 5), 11:59pm.

Make sure Autolab works for you (both Intro Lab and Data Lab)

As always: slides and resources available at http://2467.cs.uno.edu

Course notes Preview Bits and Bytes Up next: Integer Values

http://2467.cs.uno.edu

How to submit introlab
Wrap-up section: create a tar file

Now the time is saved in copyij_result.txt. Run: cat copyij_result.txt to make sure it really
contains the results.
Now run time ./array_copy_ji as you did above. Has the result changed? It should. Record this
result in a new file using a similar command as above, instead calling this file copyji_result.txt
(note the order of i and j changed in the filename)
Based on your reading of Chapter 1 and our discussion in class, you should be able to describe
briefly why these seemingly identical functions would run faster or slower. Put your answer in
answers3.txt.
Lab task (10 points): Make sure the files copyij_result.txt copyji_result.txt and answers3.txt
are named correctly so that you get credit for completing this part.
Extra credit (1 point): Use gcc to compile both programs with the -O3 flag16 and compare
the results. Does it run any faster? What is the difference between the two functions now? Why?
What’s going on here? Add your answer to bonus-answers3.txt.

Wrap-up

Now it’s time to create the introlab-handin.tar file that is to be submitted to Autolab. To create
the tar file we must first be sure that our current working directory contains the directories part1
part2 part3. Follow the steps below:

$ cd
$ cd 2467
$ ls
part1 part2 part3
$ tar cvf introlab-handin.tar part1 part2 part3

The first line moves us back to our home directory. We then enter the 2467 directory with the
second line. The third line is to ensure that we are in the right location and can see our part1
part2 part3 directories. Finally, the last line creates introlab-handin.tar which we will submit
to Autolab.
To submit introlab-handin.tar, go back to where the lab handout was downloaded from Autolab.
On the right hand side, check the box that confirms that you have adhered to the academic integrity
policy then click the submit button. This will open up a file upload window where you will select
the introlab-handin.tar file you just created. Refresh the page after a few seconds and you will
see that the autograder has graded your work. You can see detailed grading information by clicking
on one of the highlighted scores for parts 1, 2, or 3. Keep in mind that if you are unhappy with
your score, there are unlimited submission attempts as long as the assignment is turned in before
the deadline.
You’ve completed Lab 0! Now on to the fun stuff...

16Note that this is the letter capital-o, not the digit 0. But it is followed by the digit 3!

13

Course notes Preview Bits and Bytes Up next: Integer Values

How to submit introlab
Using Autolab website

Course notes Preview Bits and Bytes Up next: Integer Values

Handing in (introlab)

Autolab website

Your computer systems− lab

download/submit

ssh or systems−lab−web

Course notes Preview Bits and Bytes Up next: Integer Values

Overview

Course notes

1 Preview

2 Bits and Bytes
Representing information as bits
Bit-level manipulations

Boolean Algebra
Logical operators
Shift operators

3 Up next: Integer Values
Signed and Unsigned ints

Course notes Preview Bits and Bytes Up next: Integer Values

ints are not Integers

Source: xkcd.com

Z is infinitely large, computer memory is not.
This is the fundamental challenge!

Course notes Preview Bits and Bytes Up next: Integer Values

https://xkcd.com/571/

ints are not Integers and floats are not Reals

Is x2 ≥ 0?

- Floating point? Yes!

- Int?

40000 ∗ 40000→ 1600000000

50000 ∗ 50000→??

Is (x + y) + z = x + (y + z) ?

- Int (signed or unsigned): Yes!

- Float?

3.2 + (1e20− 1e20)→ 3.2

(3.2 + 1e20)− 1e20→??

Course notes Preview Bits and Bytes Up next: Integer Values

Computer Arithmetic

Does not generate random values

- Arithmetic operations have important mathematical properties

Cannot assume all “usual” mathematical properties

- Due to finiteness of representations

- int operations satisfy ring properties:

Commutativity, associativity, distributivity

- Floating point operations satisfy ordering properties:

Monotonicity, values of signs

Observation

- You need to understand which abstractions apply in which contexts

Course notes Preview Bits and Bytes Up next: Integer Values

Overview

Course notes

1 Preview

2 Bits and Bytes
Representing information as bits
Bit-level manipulations

Boolean Algebra
Logical operators
Shift operators

3 Up next: Integer Values
Signed and Unsigned ints

Course notes Preview Bits and Bytes Up next: Integer Values

Everything is bits

Each bit is 0 or 1

By encoding/interpreting sets of bits in various ways computers determine what to
do (instructions) and represent and manipulate numbers, sets, text, etc

00100011 01101001 01101110 01100011 01101100 01110101 #inclu

01100100 01100101 00100000 00111100 01110011 01110100 de <st

01100100 01101001 01101111 00101110 01101000 00111110 dio.h>

00001010 00001010 01101001 01101110 01110100 00100000 ..int

01101101 01100001 01101001 01101110 00101000 00101001 main()

00001010 01111011 00001010 00100000 00100000 00100000 .{.

00100000 01110000 01110010 01101001 01101110 01110100 print

01100110 00101000 00100010 01101000 01100101 01101100 f("hel

01101100 01101111 00101100 00100000 01110111 01101111 lo, wo

01110010 01101100 01100100 01011100 01101110 00100010 rld\n"

00101001 00111011 00001010 00100000 00100000 00100000);.

00100000 01110010 01100101 01110100 01110101 01110010 retur

01101110 00100000 00110000 00111011 00001010 01111101 n 0;.}

00001010 .

Course notes Preview Bits and Bytes Up next: Integer Values

Everything is bits

Each bit is 0 or 1

By encoding/interpreting sets of bits in various ways computers determine what to
do (instructions) and represent and manipulate numbers, sets, text, etc

001000110110100101101110011000110110110001110101 #inclu

011001000110010100100000001111000111001101110100 de <st

011001000110100101101111001011100110100000111110 dio.h>

000010100000101001101001011011100111010000100000 ..int

011011010110000101101001011011100010100000101001 main()

000010100111101100001010001000000010000000100000 .{.

001000000111000001110010011010010110111001110100 print

011001100010100000100010011010000110010101101100 f("hel

011011000110111100101100001000000111011101101111 lo, wo

011100100110110001100100010111000110111000100010 rld\n"

001010010011101100001010001000000010000000100000);.

001000000111001001100101011101000111010101110010 retur

011011100010000000110000001110110000101001111101 n 0;.}

00001010 .

Course notes Preview Bits and Bytes Up next: Integer Values

Why bits?
Photo c©2005 Paul W Shaffer, University of Pennsylvania

Course notes Preview Bits and Bytes Up next: Integer Values

ENIAC

Course notes Preview Bits and Bytes Up next: Integer Values

Why bits?

Course notes Preview Bits and Bytes Up next: Integer Values

Why bits?

Electronic Implementation

Easy to store with bistable elements

Reliably transmitted on noisy and inaccurate wires

Course notes Preview Bits and Bytes Up next: Integer Values

Counting in base-2 (binary)

Base 2 Number Representation (not characters or strings)

Represent 246710 as 1001101000112

value 211 210 29 28 27 26 25 24 23 22 21 20

value 2048 1024 512 256 128 64 32 16 8 4 2 1
Bits 1 0 0 1 1 0 1 0 0 0 1 1

add: 2048 + 256 +128 + 32 + 2+ 1
Sum: 2467

Represent 1.2010 as 1.0011001100110011[0011]...2

value 20 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10 ...

value 1
1

2

1

4

1

8

1

16

1

32

1

64

1

128

1

256

1

512

1

1024
...

Bits 1 0 0 1 1 0 0 1 1 0 0 1 1

Course notes Preview Bits and Bytes Up next: Integer Values

Encoding Byte Values

1 Byte = 8 bits

Binary 000000002 to 111111112

Decimal 010 to 25510

Hexadecimal 0016 to FF16

Hexadecimal: Base 16 representation

Use characters 0 to 9 and A to F
Write FA 1D 37 B1 in C as:
0xFA1D37B1

0xfa1d37b1

Important to get comfortable with this notation

Used in all subsequent labs
Practice problems 2.1, 2.2, 2.3, 2.4 will help you
build your hex-literacy

hex decimal binary

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Course notes Preview Bits and Bytes Up next: Integer Values

Example Data Representations

Size in Bytes
C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1
short 2 2 2

int 4 4 4
long 4 8 8
float 4 4 4

double 8 8 8
long double - - 10/16
pointer 4 8 8

Course notes Preview Bits and Bytes Up next: Integer Values

Course notes

1 Preview

2 Bits and Bytes
Representing information as bits
Bit-level manipulations

Boolean Algebra
Logical operators
Shift operators

3 Up next: Integer Values

Course notes Preview Bits and Bytes Up next: Integer Values

Boolean Algebra

Algebraic representation of logic, developed by Boole in 1850s
Encodes “True” as 1 and “False” as 0

Binary AND:
A&B = 1 when
both A = 1 and B = 1

& 0 1

0 0 0
1 0 1

Binary NOT (complement):
∼ A = 1 when A = 0

∼ 1

0 1
1 0

Binary OR:
A|B = 1 when
either A = 1 or B = 1

| 0 1

0 0 1
1 1 1

Exclusive-Or (XOR):
A ∧ B = 1 when either A = 1
or B = 1 but not both

∧ 0 1

0 0 1
1 1 0

Based on Figure 2.7 in CS:APP3e

Course notes Preview Bits and Bytes Up next: Integer Values

Boolean Algebra extended

The connection between Boolean algebra and digital logic was first proposed by Claude
Shannon in a 1937 Master’s thesis.
Can operate on bit vectors, applying operation bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ˆ 01010101 ˜ 01010101

01000001 01111101 00111100 10101010

105 & 85
= 65 ??

(Bitwise operations look strange when using decimal representations!)

Course notes Preview Bits and Bytes Up next: Integer Values

Boolean Algebra and finite sets

Width w bit vector represents subsets of {0, ... , w-1}
aj = 1 if j ∈ A

01101001 { 0 , 3 , 5 , 6 }
76543210

01010101 { 0 , 2 , 4 , 6 }
76543210

Operations (on the two sets given above):

& Intersection 01000001 { 0 , 6 }
| Union 01111101 { 0, 2, 3, 4, 5, 6 }
ˆ Symmetric difference 00111100 { 2, 3, 4, 5 }
˜ Complement 10101010 { 1, 3, 5, 7 }

Course notes Preview Bits and Bytes Up next: Integer Values

Some useful properties of Boolean Algebra

3

Shared properties
Property Integer ring Boolean algebra
Commutativity a+ b = b+ a a | b = b | a

a× b = b× a a & b = b & a

Associativity (a+ b) + c = a+ (b+ c) (a | b) | c = a | (b | c)
(a× b)× c = a× (b× c) (a & b) & c = a & (b & c)

Distributivity a× (b+ c) = (a× b) + (a× c) a & (b | c) = (a & b) | (a & c)

Identities a+ 0 = a a | 0 = a
a× 1 = a a & 1 = a

Annihilator a× 0 = 0 a & 0 = 0

Cancellation −(−a) = a ˜(˜a) = a

Unique to Rings
Inverse a+−a = 0 —

Unique to Boolean Algebras
Distributivity — a | (b & c) = (a | b) & (a | c)

Complement — a | ˜a = 1
— a & ˜a = 0

Idempotency — a & a = a
— a | a = a

Absorption — a | (a & b) = a
— a & (a | b) = a

DeMorgan’s laws — ˜(a & b) = ˜a | ˜b
— ˜(a | b) = ˜a & ˜b

Figure 2: Comparison of integer ring and Boolean algebra. The two mathematical structures share
many properties, but there are key differences, particularly between − and ˜.

Source: CS:APP Web Aside DATA:BOOL

Course notes Preview Bits and Bytes Up next: Integer Values

http://csapp.cs.cmu.edu/3e/waside/waside-boolean.pdf

Bit Masks

10010101 data
& 00011100 mask
= 00010100 result

Unwanted bits are
“masked out”: 00010100

Course notes Preview Bits and Bytes Up next: Integer Values

Logical operators

Don’t confuse bitwise and logical operators! They look similar but are very different.

&&, || , !

- View 0 as “False”

- View anything non-zero as “True”

- Always return 0 or 1

- Early termination!

Examples:

!0x41⇒ 0x00

!0x00⇒ 0x01

!!0x41⇒ 0x01

0x69 && 0x55 ⇒ 0x01

0x69 || 0x55 ⇒ 0x01

a && 5/a (will never divide by zero)

p && *p (avoids null pointer access)

Course notes Preview Bits and Bytes Up next: Integer Values

Shift operators

Left Shift: x << y

- Shift bitvector x left y positions

(Throw away extra bits on left)

- Fill with 0s on right

Right Shift: x >> y

- Shift bitvector x right y positions

(Throw away extra bits on right)

? Logical shift: fill with 0s on left

? Arithmetic shift: Replicate most significant bit
on left

Undefined: Shift < 0 or ≥ word size

Example 1
Argument x 01100010

<< 3 00010000
Log. >> 2 00011000

Arith. >> 2 00011000

Example 2
Argument x 10100010

<< 3 00010000
Log. >> 2 00101000

Arith. >> 2 11101000

Course notes Preview Bits and Bytes Up next: Integer Values

Course notes

1 Preview

2 Bits and Bytes
Boolean Algebra
Logical operators
Shift operators

3 Up next: Integer Values
Signed and Unsigned ints

Course notes Preview Bits and Bytes Up next: Integer Values

Coming up next. . .

Integers: unsigned, signed, negation, arithmetic (Sections 2.2-2.3)

Course notes Preview Bits and Bytes Up next: Integer Values

Encoding Integer values

Unsigned

B2U(X) =
w−1∑
i=0

xi · 2i
Signed

B2T (X) = −xw−1 · 2w−1 +
w−2∑
i=0

xi · 2i

Change: Sign bit!

B2T (X) = −xw−1 · 2w−1 +
w−2∑
i=0

xi · 2i

Change: Sign bit!

Example using short in C (2 bytes):

Decimal Hex Binary

2467 09A3 00001001 10100011
-2467 F65D 11110110 01011101

This is called Two’s complement
Sign bit indicates sign

- 0 for non-negative
- 1 for negative

Course notes Preview Bits and Bytes Up next: Integer Values

Unsigned Integers

[0001]	

[0101]	

[1011]	

[1111]	

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

12	

13	

14	

15	

16	

23 = 8	

22 = 4	

21 = 2	

20 = 1	

Course notes Preview Bits and Bytes Up next: Integer Values

Signed Integers

[1011]	

[1111]	

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

– 23 = –8	

22 = 4	

21 = 2	

20 = 1	

–8	

–7	

–6	

–5	

–4	

–3	

–2	

–1	

23 = 8	

9	

 10	

 11	

12	

13	

14	

15	

16	

+16	

+16	

Course notes Preview Bits and Bytes Up next: Integer Values

Back to the 2’s complement encoding example

short int x= 2467: 00001001 10100011
short int y= -2467: 11110110 01011101

Weight 2467 -2467

1 1 1 1 1
2 1 2 0 0
4 0 0 1 4
8 0 0 1 8

16 0 0 1 16
32 1 32 0 0
64 0 0 1 64

128 1 128 0 0

256 1 256 0 0
512 0 0 1 512

1024 0 0 1 1024
2048 1 2048 0 0
4096 0 0 1 4096
8192 0 0 1 8192

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum: 2467 -2467

o
Course notes Preview Bits and Bytes Up next: Integer Values

Coming up next. . .

Integers: unsigned, signed, negation, arithmetic (Sections 2.2-2.3)

Course notes Preview Bits and Bytes Up next: Integer Values

	Course notes
	Preview
	Bits and Bytes
	Representing information as bits
	Bit-level manipulations

	Up next: Integer Values
	Signed and Unsigned ints

