CSCI2467: Systems Programming Concepts

Slideset 2: Information as Data
Source: CS:APP Bryant & O’Hallaron (Section 2.1)

Course Instructors: Course Assistants:
Matthew Toups Saroj Duwal
Caitlin Boyce David McDonald
Spring 2020

&

Course updates

introlab due tonight, 11:59pm

Autolab handles due date, grace days, late penalties

datalab out today - will be more challenging and time consuming
Due in two weeks (Wednesday February 5), 11:59pm.

Make sure Autolab works for you (both Intro Lab and Data Lab)

As always: slides and resources available at http://2467.cs.uno.edu

Course notes

http://2467.cs.uno.edu

How to submit introlab

Wrap-up section: create a tar file

Course notes

‘Wrap-up

Now it’s time to create the introlab-handin.tar file that is to be submitted to Autolab. To create
the tar file we must first be sure that our current working directory contains the directories part1
part2 part3. Follow the steps below:

$ cd

$ cd 2467

$ 1s

partl part2 part3

$ tar cvf introlab-handin.tar partl part2 part3

The first line moves us back to our home directory. We then enter the 2467 directory with the
second line. The third line is to ensure that we are in the right location and can see our parti
part2 part3 directories. Finally, the last line creates introlab-handin.tar which we will submit
to Autolab.

To submit introlab-handin.tar, go back to where the lab handout was downloaded from Autolab.
On the right hand side, check the box that confirms that you have adhered to the academic integrity
policy then click the submit button. This will open up a file upload window where you will select
the introlab-handin.tar file you just created. Refresh the page after a few seconds and you will
see that the autograder has graded your work. You can see detailed grading information by clicking

How to submit introlab

Using Autolab website

e CSCl 2467: tems Prog gcC ept: zilla Firel =/ £
[csCi2467: Systems Proc X | +
< c & © Gt . " - =) =l wm
=" FileUpload
o Recent 4 | @ matoups2 | 2467 | introlab.
Home
Name v [size Modified
Desktop B3 part1 14:54
Documents £J part2 14:52
Downloads £ part3 14:52
Music [introlab.pdf 553.7kB 14151
Pictures 5
Videos [introlab-handout.tar 20.5kB 1451
O xrdp_client
Admin Options| + other Locations~
AllFiles v
CA Options ® cancel
Options

Drag a file here to hand in. Click to select a file.

[J 1affirm that 1 have complied with this course's academic

integrity policy as defined in the syllabus.

Course es

Handing in (introlab)

p
Autolab website

download /submit

‘ ssh or systems—lab—web .
Your computer systems — lab

Course notes

@ Course notes
@ Preview

© Bits and Bytes
@ Representing information as bits

@ Bit-level manipulations
@ Boolean Algebra
@ Logical operators
@ Shift operators

© Up next: Integer Values
@ Signed and Unsigned ints

Course notes

ints are not Integers

loseZone

Fo

e 1,306... 1,307...

BAAA

D
/F'—m

AN A AN

=

... 32,767 ..,-32,768...

5

b =32,767... 32,766 ...

Source: xkcd.com

Z is infinitely large, computer memory is not.
This is the fundamental challenge!

Preview

https://xkcd.com/571/

ints are not Integers and floats are not Reals

o Is x> > 07
- Floating point? Yes!
- Int?
40000 * 40000 — 1600000000
50000 * 50000 —77
ols(x+y)+z=x+(y+2)7?
- Int (signed or unsigned): Yes!
- Float?
3.2 + (1€20 — 1€20) — 3.2
(3.2 + 1e20) — 1€20 —7?

Computer Arithmetic

@ Does not generate random values

- Arithmetic operations have important mathematical properties

@ Cannot assume all “usual” mathematical properties

- Due to finiteness of representations

- int operations satisfy ring properties:
Commutativity, associativity, distributivity

- Floating point operations satisfy ordering properties:
Monotonicity, values of signs

@ Observation

You need to understand which abstractions apply in which contexts

@ Course notes
@ Preview

© Bits and Bytes
@ Representing information as bits

@ Bit-level manipulations
@ Boolean Algebra
@ Logical operators
@ Shift operators

© Up next: Integer Values
@ Signed and Unsigned ints

Everything is bits

@ EachbitisOor1l

e By encoding/interpreting sets of bits in various ways computers determine what to
do (instructions) and represent and manipulate numbers, sets, text, etc

00100011 01101001 01101110 01100011 01101100 01110101 #inclu
01100100 01100101 00100000 00111100 01110011 01110100 de <st
01100100 01101001 01101111 00101110 01101000 00111110 dio.h>
00001010 00001010 01101001 01101110 01110100 00100000 ..int
01101101 01100001 01101001 01101110 00101000 00101001 main()
00001010 01111011 00001010 00100000 00100000 00100000 .{.
00100000 01110000 01110010 01101001 01101110 01110100 print
01100110 00101000 00100010 01101000 01100101 01101100 £("hel
01101100 01101111 00101100 00100000 01110111 01101111 1lo, wo
01110010 01101100 01100100 01011100 01101110 00100010 rld\n"
00101001 00111011 00001010 00100000 00100000 00100000) ;.
00100000 01110010 01100101 01110100 01110101 01110010 retur
01101110 00100000 00110000 00111011 00001010 01111101 =n 0;.}
00001010

Bits and Bytes
0000000

Everything is bits

@ EachbitisOor1l

e By encoding/interpreting sets of bits in various ways computers determine what to
do (instructions) and represent and manipulate numbers, sets, text, etc

001000110110100101101110011000110110110001110101 #inclu
011001000110010100100000001111000111001101110100 de <st
011001000110100101101111001011100110100000111110 dio.h>
000010100000101001101001011011100111010000100000 . .int
011011010110000101101001011011100010100000101001 main ()
000010100111101100001010001000000010000000100000 . {.
001000000111000001110010011010010110111001110100 print
011001100010100000100010011010000110010101101100 £ ("hel
011011000110111100101100001000000111011101101111 1o, wo
011100100110110001100100010111000110111000100010 rld\n"
001010010011101100001010001000000010000000100000) ; .
001000000111001001100101011101000111010101110010 retur
011011100010000000110000001110110000101001111101 n 0;.}
00001010

Bits and Bytes
000000

Why bits?

Photo (©2005 Paul W Shaffer, University of Pennsylvania

THE WORLD
GINERAL- F

2005/12/13 12:49 pm

Bits and Bytes
00@000000

ENIAC

Electronic Computer Flashes
Answers, May Speed Engineering

By T. R. EEXNEDY Jr.
Speeial to TUr Mew Yeuk Tiss,

PHILADELPHIA, Feb. 14—One
of the war's top secrets, an amaz-
ing machine which applies elec-
tronic speeds for the first time to
mathematical t.askx hitherto too
difficult and cumbersome for solu-
tion, was announced here tonight)
by the War Department, Leaders
who saw the device in action for|| -
the first time heralded it as a tool| ™
'with which to begin, to rebuild
sclentific affairs on new founda-
tions,

Such instruments, it was said,
could revoluunnl.w modern en-

ing on a new epoch

tronie speed marvel is known, vir-
tually eliminates time in deing
such jobs. Itz inventors say it
computes a mathematical problem
1,000 times faster than it has ever

{bean done before.

The machine is being used on a

blem in nuclear physics.
" The Eniae, known more formally

“the electronic numerical inte-
gr.n.or and computer,” has not a
single moving mechanical part.
Mothing inside its 18,000 vacuum
tubes and several miles of wirlng
moves extept the tiniest elements
of matter-clostrons. There are,

of industrial design, and
eliminate much slow and eosuy
trial-and-error development work
now deemed necessary in the
fashioning of intricate machines.
Heretofore, sheer mathematical
difficulties have often forced de-

{signers to accept inferior solutions

of their problems, with higher

costs and slower progress.
‘The “Eniac” as the new elev

ical devices nsso-
ciated with it which translate or
“interpret” the mathematical lan-
guage of man to terms understood
by the Eniac, and vice versa.

Ceremonies dedicating the ma-
chine will be held tomorrow night
at a dinner given a group of Gov-
ernment and scientific men at the

University of Pransylvania, after

%, Cobamn %

Bits and Bytes
000000000

Why bits?

\o\p\5\a'\§\ ¢

ArAcH

T T

ﬁ) \¢

A4

)\ o) Wicleglglglglclggldle ¢ r
PR

RIREEET

R,

r
i

Bits and Bytes
000080000

Why bits?

@ Electronic Implementation
@ Easy to store with bistable elements

@ Reliably transmitted on noisy and inaccurate wires

O > | -I > -1—0-—.-

1.1V —
0.9V —

0.2V —
/__'—-ﬂ'——"\'——J \.-_f'
0.0V —

Bits and Bytes
000008000

Counting in base-2 (binary)

Base 2 Number Representation (not characters or strings)

@ Represent 24671¢ as 100110100011,
value 211 210 99 98 27 26 25 24 93 92 ol 50

value 2048 1024 512 256 128 64 32 16 8 4 2 1
Bits 1 0 0 1 1 O 1 0 0 O 1 1
add: 2048 + 256 +128 + 32 + 2+ 1
Sum: 2467

@ Represent 1.201¢ as 1.0011001100110011[0011]...o
value 20 271 972 93 o4 95 o6 o7 o8 59 H-10
1 1 1 1 1 1 1 1 1

=

8§ 16 32 64 128 256 512 1024
1 1 0 o0 1 1 0 0 1 1

value 1

2 4
Bits 1 0 0

Bits and Bytes
000000800

Encoding Byte Values

. hex | decimal | binar
o 1 Byte = 8 bits 5 0 0003
e Binary 00000000, to 11111111, 1 1| 0001

e Decimal 019 to 25519 2 2 | 0010

o Hexadecimal 0046 to FFig 3 3| 0011

@ Hexadecimal: Base 16 representation g g 818(1)
o Use characters 0 to 9 and A to F 6 6| 0110

o Write FA 1D 37 Bl in C as: 7 7| o111
0xFA1D37B1 8 8 | 1000
0xfal1d37bl 9 9 | 1001

@ Important to get comfortable with this notation g‘ 1(1) 181(1)
o Used in all subsequent labs C 12 | 1100

o Practice problems 2.1, 2.2, 2.3, 2.4 will help you D 13 | 1101
build your hex-literacy E 14 | 1110

F 15 | 1111

Bits and Bytes
000000080

Example Data Representations

Size in Bytes
C Data Type Typical 32-bit Typical 64-bit x86-64
char 1 1 1
short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double - - 10/16
pointer 4 8 8

Bits and Bytes
00000000

@ Course notes
© Preview

Bits and Bytes
(2 y

@ Bit-level manipulations
@ Boolean Algebra

© Up next: Integer Values

Bits and Bytes
@000000

Boolean Algebra

Algebraic representation of logic, developed by Boole in 1850s

Encodes “True” as 1 and “False” as 0

Binary AND:
A& B =1 when
bothA=1and B=1
& |0 1
"0[0 0

10 1

Binary NOT (complement):
~A=1when A=0

—_

0|1
1|0

Based on Figure 2.7 in CS:APP3e

Binary OR:
A|B =1 when
eitherA=1lorB=1
| 10 1
0/0 1
111 1
Exclusive-Or (XOR):
AN B =1 when either A=1
or B =1 but not both
AlO 1
0(0 1
111 0

Bits and Bytes

9000000

Boolean Algebra extended

The connection between Boolean algebra and digital logic was first proposed by Claude
Shannon in a 1937 Master's thesis.

Can operate on bit vectors, applying operation bitwise

01101001 01101001 01101001

& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010
105 & 85
=6577

(Bitwise operations look strange when using decimal representations!)

Bits and Bytes
0@00000

Boolean Algebra and finite sets

Width w bit vector represents subsets of {0, ... , w-1}
aj = 1 ifj €A

01101001 {0,3,5,6}
76543210

01010101 {0,2,4,6}
76543210

Operations (on the two sets given above):

& Intersection 01000001 {0,6}

| Union 01111101 {0,2 3,4,5 6}
Symmetric difference 00111100 {2, 3,4,5}
Complement 10101010 {1,3,5,7}

Bits and Bytes
0080000

Some useful properties of Boolean Algebra

Shared properties

Property Integer ring Boolean algebra
Commutativity at+b=b+a alb=bla
axb=bxa asb=bsa
Associativity (a+b)+c=a+(b+c) (a1bd)lc=al(blec)
(axb)xc=ax(bxc) (asb)sc=as(bsc)
Distributivity ax (b+c)=(axb)+(axc)|aslc)=(asbd) | (as&c)
Identities a+0=a all0=a
axl=a a&l=a
Annihilator ax0=0 a&0=0
Cancellation —(—a)=a “(Ta)=a

Unique to Rings
Inverse a+—a=0 ‘ — ‘

Unique to Boolean Algebras

Distributivity — al(bsc)y=(alb)s(alc)
Complement — al "a=1

— as& “a=0
Idempotency — asta=a

— ala=a
Absorption — al(asdb)=a

— as(alb)=a
DeMorgan’s laws — “(asb)="al b

— “(al1b)="as&"b

Bits and Bytes
0000000

http://csapp.cs.cmu.edu/3e/waside/waside-boolean.pdf

10010101 data
& 00011100 mask
= 00010100 result
Unwanted bits are
“masked out”: 06610160

Bits and Bytes
00000800

Logical operators

Don't confuse bitwise and logical operators! They look similar but are very different.
o &&, || ,!
- View 0 as “False”
- View anything non-zero as “True”
- Always return 0 or 1

Early termination!
Examples:
e !0x41 = 0x00
10x00 = 0x01
110x41 = 0x01
0x69 && 0x55 = 0x01
0x69 || 0x55 = 0x01
a && 5/a (will never divide by zero)
p && *p (avoids null pointer access)

Bits and Bytes
0000000

Shift operators

o Left Shift: x <<y
- Shift bitvector x left y positions
(Throw away extra bits on left) Example 1
- Fill with Os on right Argument x | 01100010

<<3 00010000
Log. >>2 | 00011000

@ Right Shift: x >>y

- Shift bitvector x right y positions Arith. >> 2 | 00011000
(Throw away extra bits on right)
* Logical shift: fill with Os on left Example 2

Argument x | 10100010

<< 3 00010000
Log. >>2 | 00101000
Arith. >> 2 | 11101000

Bits and Bytes
000000@

* Arithmetic shift: Replicate most significant bit
on left

@ Undefined: Shift < 0 or > word size

@ Course notes
© Preview

Bits and Bytes
(2 y

© Up next: Integer Values
@ Signed and Unsigned ints

Up next: Integer Values
©00000

Integers: unsigned, signed, negation, arithmetic (Sections 2.2-2.3)

Up next: Integer Values
©00000

Encoding Integer values

Unsigned Signed
w—1 w—2
B2U(X) =) x-2' B2T(X) = —Xw-1-2" "+ > x-2
—0 i—0
I Change: Sign bit! I
w—2 .
B2T(X) = —xy1-2" "+) x-2
i=0
Change: Sign bit!
Decimal | Hex Binary
@ Example using short in C (2 bytes): 2467 | 09A3 | 00001001 10100011
-2467 | F65D | 11110110 01011101
@ This is called Two’s complement

Sign bit indicates sign
- 0 for non-negative
1 for negative

Up next: Integer Values
000000

Unsigned Integers

(\®)
@
Il

(\SRE \O RN \9)

S = P

1 | I

el \S I SN)
o
4 o lII

3

4 &

5 67 8 910111213141516
1 {

[0001]
[0101]
[1011]
[1111]

Up next: Integer Values

[e]e] lelele]

Signed Integers

<
23=8
22=4
21=2
20=1
—8-7-6-5-4-3-2-1

012345678 910111213141516

(011 (e D

+16 >

1111 (s I R D D

+16 >

Up next: Integer Values
000e00

Back to the 2's complement encoding example

short int x= 2467: 00001001 10100011
short int y= -2467: 11110110 01011101

Weight | 2467 -2467
1 1 1 1 1
2 1 2 0 0
4 0 0 1 4
8 0 0 1 8
16 0 0 1 16
32 1 32 0 0
64 0 0 1 64
128 1 128 0 0
256 1 256 0 0
512 0 0 1 512
1024 0 0 1 1024
2048 1 2048 0 0
4096 0 0 1 4096
8192 0 0 1 8192
16384 0 0 1 16384
-32768 0 0 1 -32768
Sum: 2467 -2467

o

Up next: Integer Values
000080

Integers: unsigned, signed, negation, arithmetic (Sections 2.2-2.3)

Up next: Integer Values
00000e

	Course notes
	Preview
	Bits and Bytes
	Representing information as bits
	Bit-level manipulations

	Up next: Integer Values
	Signed and Unsigned ints

