THE UNIVERSITY of
NEW ORLEANS

DEPARTMENT OF
COMPUTER SCIENCE
CSCI 2467, Spring 2020
€ The Shell Lab: Writing your own Unix Shell
Assigned: March 4, 2020
1st due date: Friday, March 13 (in class!)
2nd due date: Thursday, March 26 (11:59 PM)

2467 Instructors: M. Toups / C. Boyce
staff@2467.cs.uno.edu

1 Introduction

The purpose of this assignment is for students to become more familiar with the concepts of
processes, the fork() system call, parent and child processes, signalling, and file input/output
redirection. You'll do this by writing a simple Unix shell program that supports job control. In
addition to learning about many important systems topics, you will also get much more experience
writing code in C.

See section 3 for background on shells, and section 4 for specifics on your tasks.

2 Logistics

As usual, this is an individual project. You will hand in your own work and no one else’s! The
only exception is you may refer to the CS:APP textbook with citations. Keep in mind that the
examples in the book are not good enough so you cannot use them as-is, they are only a guideline.

When handing in, you will submit only the file tsh.c to Autolab. See Section 8 for handin details.

Attention!

There are two due dates. If you have not made sufficient progress by the first due date, you will
lose 10 points which you cannot regain! Section 7 will provide more details on how the score is
computed. Do not ignore the first deadline!



2.1 Hand Out Instructions

We will provide an initial shell program which you will modify. To begin the process of retrieving
the initial files, start by logging in to systems-1lab.cs.uno.edu as usual.

Your starting point will be provided in the file shlab-handout.tar which you will get from Auto-
Lab.

From the Autolab website for our course, select Shell Lab and then click on Download handout
(under Options). That will allow you to download and save shlab-handout.tar, which you should
keep in your ~/2467 directory.

Once you have obtained the shlab-handout.tar file, you can start by doing these things:

e use the command tar xvf shlab-handout.tar to expand the tar file, then change into the
new directory with cd

e use the command make to compile some test programs.

e use your editor to put your name and UNO email address in the header comment at the top
of tsh.c.

Looking at the tsh.c (tiny shell) file, you will see that it contains a functional skeleton of a simple
Unix shell. To help you get started, we have already implemented the less interesting functions.
Your assignment is to complete the remaining empty functions listed below. As a sanity check
for you, we’ve listed the approximate number of lines of code for each of these functions in our
reference solution (which includes lots of comments).

e eval: Main routine that parses and interprets the command line. [70 lines]

e builtin_cmd: Recognizes and interprets the built-in commands: quit, fg, bg, and jobs. [25
lines|

e do_bgfg: Implements the bg and fg built-in commands. [50 lines]
e waitfg: Waits for a foreground job to complete. [20 lines]

e sigchld handler: Catches SIGCHILD signals. [80 lines]

e sigint handler: Catches SIGINT (ctrl-c) signals. [15 lines]

e sigtstp_-handler: Catches SIGTSTP (ctrl-z) signals. [15 lines]

e do_redirect: Implements the input/output redirection feature [15 lines]

Each time you modify your tsh.c file, type make to recompile it. To run your shell, type tsh to
the command line:

systems-lab$ ./tsh
tsh> [type commands to your shell here]



3 General Overview of Unix Shells

A shell is an interactive command-line interpreter that runs programs on behalf of the user. A shell
repeatedly prints a prompt, waits for a command line on stdin, and then carries out some action,
as directed by the contents of the command line.

The command line is a sequence of ASCII text words delimited by whitespace. The first word in
the command line is either the name of a built-in command or the pathname of an executable file.
The remaining words are command-line arguments. If the first word is a built-in command, the
shell immediately executes the command in the current process. Otherwise, the word is assumed
to be the pathname of an executable program. In this case, the shell forks a child process, then
loads and runs the program in the context of the child. The child processes created as a result of
interpreting a single command line are known collectively as a job. In general, a job can consist of
multiple child processes connected by Unix pipes.

If the command line ends with an ampersand “&”, then the job runs in the background, which means
that the shell does not wait for the job to terminate before printing the prompt and awaiting the
next command line. Otherwise, the job runs in the foreground, which means that the shell waits
for the job to terminate before awaiting the next command line. Thus, at any point in time, at
most one job can be running in the foreground. However, an arbitrary number of jobs can run in
the background.

For example, typing the command:
tsh> jobs

causes the shell to execute the built-in jobs command. Typing the command line:
tsh> /bin/ls -1 -d

runs the 1s program in the foreground. By convention, the shell ensures that when the program
begins executing its main routine

int main(int argc, char *argv[])

the argc and argv arguments have the following values:

e argc == 3,

e argv[0] == "/bin/1ls",
e argv[1]== "-1",

e argv[2]== "-d".

Alternatively, typing the command line:
tsh> /bin/ls -1 -d &

runs the 1s program in the background.

Unix shells support the notion of job control, which allows users to move jobs back and forth between
background and foreground, and to change the process state (running, stopped, or terminated) of
the processes in a job. Typing ctrl-c causes a SIGINT signal to be delivered to each process in



the foreground job. The default action for SIGINT is to terminate the process. Similarly, typing
ctrl-z causes a SIGTSTP signal to be delivered to each process in the foreground job. The
default action for SIGTSTP is to place a process in the stopped state, where it remains until it is
awakened by the receipt of a SIGCONT signal. Unix shells also provide various built-in commands
that support job control. For example:

jobs: List the running and stopped background jobs.
bg <job>: Change a stopped background job to a running background job.
fg <job>: Change a stopped or running background job to a running in the foreground.

kill <job>: Terminate a job. (Note: this is not a part of the tsh spec; see below.)

4 The tsh Specification

Your tsh shell should have the following features:

The prompt should be the string “tsh> ”.

The command line typed by the user should consist of a name and zero or more arguments,
all separated by one or more spaces. If name is a built-in command, then tsh should handle
it immediately and wait for the next command line. Otherwise, tsh should assume that name
is the path of an executable file, which it loads and runs in the context of an initial child
process (In this context, the term job refers to this initial child process).

Program output can be redirected to a file using the standard form (> output-filename),
and program input can be redirected from a file using the same form (< input-filename).
(Pipes (1) are not required for this assignment.)

Typing ctrl-c (ctrl-z) should cause a SIGINT (SIGTSTP) signal to be sent to the current
foreground job, as well as any descendents of that job (e.g., any child processes that it forked).
If there is no foreground job, then the signal should have no effect.

If the command line ends with an ampersand &, then tsh should run the job in the background.
Otherwise, it should run the job in the foreground.

Each job can be identified by either a process ID (PID) or a job ID (JID), which is a positive
integer assigned by tsh. JIDs should be denoted on the command line by the prefix '%’. For
example, “%5” denotes JID 5, and “5” denotes PID 5. (We have provided you with all of the
routines you need for manipulating the job list.)

tsh should support the following built-in commands:

— The quit command terminates the shell.
— The jobs command lists all background jobs.

— The bg <job> command restarts <job> by sending it a SIGCONT signal, and then runs
it in the background. The <job> argument can be either a PID or a JID.

The fg <job> command restarts <job> by sending it a SIGCONT signal, and then runs
it in the foreground. The <job> argument can be either a PID or a JID.

tsh should reap all of its zombie children. If any job terminates because it receives a signal
that it didn’t catch, then tsh should recognize this event and print a message with the job’s
PID and a description of the offending signal.



5 Checking Your Work

We have provided some tools to help you check your work.

Reference solution. The Linux executable tshref is the reference solution for the shell. Run
this program to resolve any questions you have about how your shell should behave. Your shell
should emit output that is identical to the reference solution (except for PIDs, of course, which
change from run to run).

Shell driver. The sdriver.pl program executes a shell as a child process, sends it commands
and signals as directed by a trace file, and captures and displays the output from the shell.

Use the -h argument to find out the usage of sdriver.pl:

systems-lab$ ./sdriver.pl -h
Usage: sdriver.pl [-hv] -t <trace> -s <shellprog> -a <args>

Options:
-h Print this message
-V Be more verbose
-t <trace> Trace file
-s <shell> Shell program to test
-a <args> Shell arguments
-g Generate output for autograder

We have also provided 17 trace files (trace{01-17}.txt) that you will use in conjunction with the
shell driver to test the correctness of your shell. The lower-numbered trace files do very simple
tests, and the higher-numbered tests do more complicated tests.

You can run the shell driver on your shell using trace file trace01.txt (for instance) by typing:
systems-lab$ ./sdriver.pl -t trace0Ol.tzt -s ./tsh -a "-p"

(the -a "-p" argument tells your shell not to emit a prompt), or

systems-lab$ make testO1

Similarly, to compare your result with the reference shell, you can run the trace driver on the
reference shell by typing:

systems-lab$ ./sdriver.pl -t trace0Ol.tzxt -s ./tshref -a "-p"
or

systems-lab$ make rtest01

For your reference, tshref .out gives the output of the reference solution on all traces. This might
be more convenient for you than manually running the shell driver on all trace files.

The nice thing about the trace files is that they generate the same output you would have gotten
had you run your shell interactively (except for an initial comment that identifies the trace).



Helpful tip from a previous 2467 student: To see exactly how your shell output differs from
the reference shell for a specific test, use this cool trick !:

systems-lab$ diff <(make test07) <(make rtest07)

This will show you how your shell’s output from test07 different from the reference shell. Hopefully
this will help you find bugs.

Finally, you can check all of the tests with:

systems-lab$ ./checktsh.py

This will notify you of any test failures. You should run this before handing in! This will give you
an idea of what score to expect on the correctness test (see Section 7 for an explanation of the
scoring).

6 Hints

e Read Chapter 8 (Exceptional Control Flow) in your textbook closely. There are examples
of code given in the book, which you may use excerpts from in your program, only if you
explicitly cite the source in a comment. Reminder: you are not to copy code from GitHub
or any other internet-based source.

e Additional hints, especially on input/output redirection, will be given in class.

e Use the trace files to guide the development of your shell. Starting with trace01.txt, make
sure that your shell produces the identical output as the reference shell. Then move on to
trace file trace02.txt, and so on.

e The waitpid, kill? , fork, execve, setpgid, and sigprocmask functions will come in very
handy. The WUNTRACED and WNOHANG options to waitpid will also be useful.

e When you implement your signal handlers, be sure to send SIGINT and SIGTSTP signals to
the entire foreground process group, using “-pid” instead of “pid” in the argument to the
kill function. The sdriver.pl program tests for this error.

e One of the tricky parts of the assignment is deciding on the allocation of work between the
waitfg and sigchld handler functions. We recommend the following approach:

— In waitfg, use a busy loop around the sleep function.

— In sigchld handler, use exactly one call to waitpid.

While other solutions are possible, such as calling waitpid in both waitfg and sigchld handler,
these can be very confusing. It is simpler to do all reaping in the handler.

e In eval, the parent must use sigprocmask to block SIGCHLD signals before it forks the child,
and then unblock these signals, again using sigprocmask after it adds the child to the job

IThis is a bash-specific trick known as process substitution
*Note that we are referring to the system call kill (manual page accessed with the command man 2 kill) not
the bash built-in function kill (manual page accessed with the command man kill or man 1 kill).


http://wiki.bash-hackers.org/syntax/expansion/proc_subst

list by calling addjob. Since children inherit the blocked vectors of their parents, the child
must be sure to then unblock SIGCHLD signals before it execs the new program.

The parent needs to block the SIGCHLD signals in this way in order to avoid the race condition
where the child is reaped by sigchld handler (and thus removed from the job list) before
the parent calls addjob.

Programs such as more, less, vi, and emacs do strange things with the terminal settings.
Don’t run these programs from your shell. Stick with simple text-based programs such as
/bin/1s, /bin/ps, and /bin/echo.

When you run your shell from the standard Unix shell, your shell is running in the foreground
process group. If your shell then creates a child process, by default that child will also be
a member of the foreground process group. Since typing ctrl-c sends a SIGINT to every
process in the foreground group, typing ctrl-c will send a SIGINT to your shell as well as
to every process that your shell created, which obviously isn’t correct.

Here is the workaround: After the fork, but before the execve, the child process should call
setpgid (0, 0), which puts the child in a new process group whose group ID is identical to the
child’s PID. This ensures that there will be only one process, your shell, in the foreground
process group. When you type ctrl-c, the shell should catch the resulting SIGINT and
then forward it to the appropriate foreground job (or more precisely, the process group that
contains the foreground job).

Is your shell crashing with a Segmentation Fault? This is often due to a null pointer reference
involving strings. Fortunately there is a good tool to find out exactly where the problem lies
in your code: gdb

To find the line of C code where the crash occurs, you need to run tsh within gdb.

systems-lab$ gdb ./tsh
(gdb) run

Now tsh is running within gdb. (Hopefully you remember gdb from earlier in the course.)

Once your shell is running, type in the commands that cause it to crash. When the Segmentation
Fault happens, gdb will give you something like this:

Program received signal SIGSEGV, Segmentation fault.
0x00007ffff7a95a6a in vfprintf() from /1lib/x86_64-linux-gnu/libc.so0.6

To find out how the program hit that problem, use the backtrace command:

(gdb) backtrace

#0 0x00007ffff7a95a6a in vfprintf () from /1ib/x86_64-linux-gnu/libc.so0.6
#1 0x00007ffff7a9e22a in printf () from /lib/x86_64-linux-gnu/libc.so.6
#2 0x0000000000400c7f in eval (cmdline=<optimized out>) at tsh.c:176

#3 0x0000000000400ac6 in main (argc=1, argv=0x7fffffffe7d8) at tsh.c:154

Look for the first mention of tsh.c in this list. This will tell you at which line of source
code the bad reference occurred. (In the case above, it is saying line 176 of tsh.c is where
the crash happens). Start looking for your bug at this point. (The problem may be shortly
before the line where the crash occurs, but this should get you close).



7 Evaluation

Your score will be computed out of a maximum of 40 points based on the following distribution:

0 pts, or -10 pts (only on First due date): You must demonstrate a working eval() func-
tion! This will show correct use of fork() to create child processes. IMPORTANT: If you
do not demonstrate a working eval() by the first due date, you will be penalized 10 points!
You cannot regain these points later.

40 pts (only on Second due date): Pass correctness tests: 20 trace files at 2 points each. Also,
as usual you must write comments which explain your solution in your own words.
Failure to do so will result in serious penalties.

Your solution shell will be tested for correctness on the AutoLab server, using the same shell driver
and trace files that were included in your lab directory. Your shell should produce identical output
on these traces as the reference shell, with only one exception: PIDs will be different each time.

8 Hand In Instructions

e Make sure you have included your name and UNO email in the top comment of tsh.c.

e As stated in the previous section, make sure your final submission contains comments ex-
plaining all of the code that you added to tsh.c. (It is not necessary to explain the code
already provided to you, although doing this may help you to understand it.)

e To hand in your tsh.c file, use your web browser to log in to AutoLab. Submit only your
tsh.c file. Autolab will take care of the rest.

e Be sure to check your score in Autolab after the autograder is finished. Running all traces
can take at least 1 minute, perhaps more if many students are submitting.

e You can hand in as often as you like, and check the resulting score in AutoLab. Please verify
that your submission worked, and that the output of checktsh.py is what you expected.

Please ask questions in class, at the CSCI helpdesk, and at course help hours. We don’t want you
to be stuck. Good luck!



	Introduction
	Logistics
	Hand Out Instructions

	General Overview of Unix Shells
	The tsh Specification
	Checking Your Work
	Hints
	Evaluation
	Hand In Instructions

