THE UNIVERSITY of
NEW ORLEANS

DEPARTMENT OF
COMPUTER SCIENCE

CSCI 2467, Spring 2020
¢ Lab 0: Introductions to C and Unix
Due: Wednesday, January 22, 11:59PM

2467 Instructors: M. Toups & C. Boyce
Assistants: D. McDonald & S. Duwal
staff@2467.cs.uno.edu

1 Introductions

The purpose of this assignment is to perform two introductions while getting you started in your
exploration of Computers from a Systems perspective. Chapter 1 of Bryant & O’Hallaron’s CS:APP
textbook will accompany this lab conceptually, and the tools we use will be explained further in the
two PDF documents from Stanford’s CS Library (Essential C and Uniz Programming Tools).

Please keep both the textbook and these two supplements handy as we work through this lab. The
two introductions we will accomplish are:

1.1 Introducing you to the lab tools

This lab will introduce you to the tools and processes we will use for all labs this semester. This
includes how to access the initial files to work on and how to turn in your work using our AutoLab
system.

It is wery important that you become comfortable with the process of starting, working on, and
turning in a lab using the instructions given here. The labs after this one will be much more
challenging, so you cannot afford to get held up on logistical details with those labs. Use this
opportunity to learn the system with this lab, which mainly requires you to follow directions.

1.2 Introducing us to the students
Your instructor and course stafl want to know a little bit about each of the students in the course.

Rather than pass out a survey or ask you to introduce yourselves in class, instead you are given the
opportunity to introduce yourself while completing this simple lab assignment.

2 Pre-requisites

2.1 What you will hand in

This is an individual lab assignment. You must turn in only your own work, including comments.
We will discuss much of this in class, but it is your responsibility to work on and complete the lab
on your own as homework. You may do your work in the lab (Math 209/212) or remotely using ssh.

The instructions in this (and all subsequent) assignments assume that you are logged in to our class
server. You will either open a terminal in room 209/212 and type commands, or use the web client
at https://systems-lab-web.cs.uno.edu, or use ssh.

You will hand in your work electronically using AutoLab when you complete the steps given in this
document. When you are finished, you will create a tar! file containing your work to submit which
should contain the following files (including the bonus answers if you choose to attempt them):

partl/partl.c
partl/student.c
partl/student.h

part2/answers2.txt
part2/a.out
part2/bonus-answers2.txt
part2/hello.c
part2/hello.i
part2/hello.s
part2/hello
part2/hello-att.s
part2/hello-bits
part2/hello-xxd

part3/answers3.txt
part3/bonus-answers3.txt
part3/copyij_result.txt
part3/copyji_result.txt

2.2 Get the initial handout files and set up a working directory

The lab files are all contained in a tar file. You will download a copy of the tar file and then extract
its contents in your home directory.

Each user has their own space on the system for files, called a home directory. The path for the
directory is /home/<USERID> where USERID is your UNO user ID. When you first log in and open
a terminal, your home directory is the default starting point. The files on your home directory are
accessible from all of the thin clients in rooms 209 and 212, as well as via ssh, so you should always
be able to access them inside or outside the lab.

!This originally stood for (t)ape (ar)chive but the name persists decades later. tar is the most common archive
format on Unix systems, analogous to zip files on MS Windows systems.

https://systems-lab-web.cs.uno.edu

2.2.1 Creating your directory

We will make a protected working directory to use for all class assignments in your home directory,
using the following commands:

$ cd ~
$ mkdir 2467
$ chmod go-rwx 2467

Above, the first line changes our current directory to your home directory. Normally when you first
log in this will already be the current directory, but in case it isn’t, it doesn’t hurt to do this. Then
the second line creates a directory called 2467 for your lab work.

The third line is important. This changes the permissions on the directory, ensuring that no other
users (such as your classmates) can read your files. chmod is the Unix command for changing
permissions. The characters go-rwx tell it to remove (=) the read (r), write (w), and execute (x)
bits from both group (g) and other (o) users. We will describe these things more in class, but it is
important that your working directory is fully private.

Verify that the permissions look right by using the command 1s -1d 2467. It should look like this
(only the names and dates should be different):

drwx-———--- 2 matoups2 matoups2 4096 Aug 17 12:13 2467

2.2.2 Downloading introlab-handout.tar from autolab

Now you can get the assignment files by downloading the file introlab-handout.tar from Autolab.
In a web browser, navigate to autolab.cs.uno.edu, select the ”Sign in with UNO” option near the
bottom of the page and sign in with your UNO student credentials. Select the 2467 course, then
Intro Lab from the list of assignments. Under ’Options’, click on 'Download handout’ to download
introlab-handout.tar. Move it from Downloads to your 2467 directory. Then extract the tar
archive using the tar command. See the example below:

$ cd ~/2467
$ tar —-xvf introlab-handout.tar

The first line changes your current directory, so you are now “in” the 2467 directory where
introlab-handout.tar was downloaded (the tilde symbol (~) is an abbreviation for your home
directory, so it is equivalent to /home/<UserID>).

Then the second line extracts the files, using the tar command. This will cause a number of files to
be unpacked.

The letters xvf are given as an argument to the tar program.? In fact, each letter denotes something
specific we are telling the program. x is the main operation, short for extract, as opposed to create
which does the opposite. v is an option, short for verbose, which says that we want to see a list of
each file extracted. Without this option, tar will only report errors, which can be confusing if you

2 The dash before xvf is actually optional, but we have included it here to make it clear that those letters are not
the filename being operated on.

don’t know what files to expect. Finally, £ says we are going to extract from a file, and is followed
by the filename to operate on.

Warning: The tar command can be powerful and unforgiving. It does not ask you “are you sure?”
before doing what you tell it to do. If you have already extracted these files, if you tell it to extract
again it will happily do so and overwrite any changes you may have made! Once that happens,
any changes you have made will be lost and no one can recover the file.

Be very careful in the future with the tar command. You will need to use it throughout the
semester, but be aware that it can overwrite files you may have already worked on. If you are in
doubt, you can always create a temporary directory and extract the files there to be sure it doesn’t
overwrite anything or do something else you aren’t expecting.

3 Lab manual

Now that you have your initial handout files and working directory set up you can proceed with the
lab. The following sections will be graded with points given for each section completed.

Part 1 (20 points): Who are you?

In this section, you will simply introduce yourself to me and tell me a little about yourself. I don’t
want you to provide more personal information than you’re comfortable with, so for this section
there will be no wrong answers. You can answer with as much detail as you like, the idea is for me
to get an idea of who you are, both personally and in terms of your computer science background.

In addition to introducing yourself, you will also get familiar with creating a very simple C program.

As you read the Essential C' document from Stanford CS Library, you should notice that many of
the things described in section 1 and 2 seem similar to Java. We will assume you already know
how to use control structures like if statements, for loops, etc and you know the difference between
simple datatypes like int and a float.

Section 3 of Essential C' and Chapter 6 of K&R describe something that does not exist in Java: a
struct. This term is short for a structure 3, a complex data type which can contain various data
types within it.* You will be using a struct to store various types of information about yourself.

Big hint: To help you out, and because dealing with strings in C is notoriously awkward, I have
provided you with some example code to start from. Look in the part1 directory that you extracted
in the previous section.

You can complete this part by editing the following files:
e partl.c This contains the main() function, the entry point for all C programs.
e student.c This contains the make_student () function, described below.

e student.h This contains the definition of the struct student datatype. This filename ends
in .h, denoting a header file, because it only contains a struct definition but no functions.

3Some languages may refer to this kind of heterogeneous data type as a record.
4This may remind you of a Class in Java, but a C struct is much simpler, without the notion of methods or members
being public/private.

You will edit each of these files using a text editor, for example the lightweight nano or vim, or the
more modern and complex notepad++ or atom or sublime_text. You may choose whatever editor
you are comfortable with, feel free to try a few, they have advantages and disadvantages. Regardless,
you will need to be comfortable with at least one (preferably more) of these tools in your career as
a student and especially professionally.

If you are using nano, your command will look like: (for another editor, replace nano with vim,
atom, sublime_text, etc)

$ nano student.h

Once you've made edits, save the file (in nano use CTRL-0 ° and then exit with CTRL-X). Any time
you make changes you should compile the code and make sure it does not contain errors.

How to compile the program: Use the following command to compile using gcc®
$ gcc partl.c student.c -o partl

How to run the program: (Note the use of ./ before the program name)

$./partil

Lab task (10 points): Make a struct with appropriate datatypes to contain the following pieces
of information about you. Then, write a function to populate an instance of that struct with the
relevant information. (Both of these things are already started in the sample files.)

Most of this information will be stored in either char arrays or ints. 7

First we must define the struct as a datatype. This has been started in student.h but you must
complete it by defining more fields in the struct.

Here is some information I would like you to provide:

o Student ID number (from your ID card)

e Student Name

o (optional) Name you prefer, if different

e UNO email address

o (optional) preferred email address

o (optional) City or place of birth/origin (or where you consider your hometown to be)

o Number of semesters you have studied at UNO prior to this semester (O=this is your first
semester here)

o CS Classes taken (course numbers, as an array of ints, see the example code)

5Often the control key is denoted with the carrot, so ~O is another way of writing CTRL-O

5Described in Section 1 of Uniz programming tools.

"If you can think of ways to use other C datatypes, feel free to be creative, but be aware that strings and pointers
in C can quickly become difficult. Try not to get in over your head, at least not until you’ve finished the easy parts.

¢ What you most want to get out of this class
e Why you are studying Computer Science

o (optional) Describe the most complicated or difficult program you have written

(optional) Describe something other than programming you’ve learned in CS

» Describe a non-CS interest of yours (such as music, art, literature, cuisine, sports, movies, etc)

(optional) Anything else you think I should know about you

In student.h you are only defining the types for these fields within the student_info struct. Once
the struct is defined, add the actual information within the make_student () function in student.c®.

Be sure the arrays you create in student.h are large enough to hold the values you are putting
in them. You can always increase the size if you decide to write more than you thought. Refer to
Essential C'and K&R to make sure you are using array notation properly.

After you define the types in student.h, you will actually set values for an instance of the struct in
student.c. This is where you’ll actually type up the information requested above.

Lab task (10 points): Modify the main() function to print out your struct in a nice, readable
fashion with each member of the struct on its own line, with a heading. This will require use of the
library function printf, which is described on page 42 of Essential C or section 7.2 of Ké/R.

So your program output should look similar to this:

$./partil
ID number: 22222222

Name: My Name

Why I am studying Computer Science:
A1l the cool kids are doing it.

You can see a starting point on how to do this in partl.c. Using the example code, finishing this
program should be quite easy.

Extra credit (1 point): Create a file called Makefile so that we can compile this program by
simply typing make. See Section 2 of Unix Programming Tools for more information on makefiles.
It can be a simple makefile, you do not need to worry about CFLAGS and other various options. Be
warned that the makefile format has this annoying feature where it requires you to use tabs instead
of whitespace. If you attempt this part, add it to your handin (as described below).

Be sure any code you turn in will compile using the gcc line given above!

8Pay attention to the difference between student.c and student.h. Having two files with the same name and
different endings is a common convention in C programming.

If gcc returns with no output, that means there were no errors during compilation. Run your
program one more time (as described above) to make sure it looks right. If there are any problems
you can fix them and turn in again.

Thank you for introducing yourself in a C program!

Part 2 (10 points): The lifecycle of a C program

In this section we will trace the life cycle of the famous first C program called hello.c. This program
prints the words hello, world and exits. You have probably seen similar programs written in other
languages; this program has become the classic example which most texts use as a starting point.

What you will hand in:

e answers2.txt bonus-answers2.txt containing your answers to questions in this section.

e a.out hello.c hello.i hello.s hello hello-att.s hello-bits hello-xxd files as de-
scribed below

Recall Figure 1.3 from CS:APP:

printf.o
hello.c prozges-sor hello.i | Compiler [hello.s |Assembler| hello.o Linker hello
_— » > > >
(cpp) (ccl) (as) (19)
Source Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)

This is the process we will trace, taking the source code of hello.c and passing it through the
pre-processor, compiler, assembler, and linker to yield an executable program. The exact steps are
given for you below, please follow them. Your results will be turned in, along with your comments.

Step 1: The hello program

We are going to work with a modified version of the classic hello.c, which you can see in CS:APP
Figure 1.1 or in the original source by K&R. This file is provided in your handout files, in the
part?2 directory.

The change in this version is that we use a different return value for the main() function. This will
not have any particular meaning or change the behavior of the program ?, but it will allow us to
see a common use of the preprocessor and to see that value in the assembly code produced by the
compiler.

First, read the file hello.c using cat or nano.

Note that RETURNVALUE is not a variable in the program. This is what is called a macro defined by
the preprocessor, and as we will see soon, it will be replaced by the value 67 before the C compiler

9Tt will actually matter in an insignificant way. The program will return 67 to the shell as its exit status, which
is typically zero in the case of success, or a nonzero value can specify an error type. Our use of 67 breaks with that
convention, but there is no harm in doing that here.

ever sees the source code. These are traditionally (but not necessarily) rendered in all capital letters
to avoid confusion with “normal” variables.

Step 2: Examine the source code file

Figure 1.2 in CS:APP contains an ASCII representation of hello.c. ASCII' is a very simple
mapping between numeric values and the alphabet used in English text, as well as some digits and
symbols. Each character can be represented in 1 byte'! and we can also display the contents of that
byte using a number.

Let’s look at how this program is stored in bits by the computer. Use this command:
$ xxd -b hello.c

You should see the program text on the right; to the left of each line is a view of how the file looks
with each bit written out. Each group of eight bits is separated by a space, denoting a byte. The
first character of your program should be # which will be represented by 00100011. You will notice
that the first (most-significant) bit of each byte it zero, because ASCII only uses 7 bits to encode
128 possible characters. This limitation is why ASCII is insufficient for encoding characters other
than the basic Latin alphabet. 2

Save this output as hello-bits. This will be part of your handin. How should you do this?
You can cut and paste into your text editor of choice, or use the shell redirect operator like this:

$ xxd -b hello.c > hello-bits

The > character takes the output of the xxd command and writes it to a file. You will use this later.

Regardless of what method you use, ensure you end up with a file called hello-bits which contains
the output of xxd.

Clearly a file larger than this would quickly become unusable when viewed this way. Here’s another
way to view the file in a more compact fashion:

xxd hello.c

Now we see each byte represented by two hexadecimal characters. The first character # is now
represented by 23, the next (letter i) is represented by 69, the next (letter n) is represented by 6e,
and so on. You can see how this is a much more efficient way to display the data in the file.

In both of the above cases, the leftmost column is an offset which allows you to refer to a byte’s
position within the file. Both start at 0000000, but the bits representation can only fit six characters
per line so the offset grows more slowly.

Save this output as hello-xxd. This will also be part of your handin.

10This stands for American Standard Code for Information Interchange, dating back to the 1960s

1 Actually, 7 bits; the most significant bit of each ASCII byte will be zero.

12Unicode is a far superior way to encode text, as it supports virtually all human languages and alphabets. See the
aside on page 50 of the CS:APP book for more on Unicode. Fortunately, Unicode is backward-compatible with ASCII,
so ASCII values are also correct Unicode values.

Extra credit question (2 points): The CS:APP textbook shows hello.c in Figure 1.2, but
the values are not the same as what we got from xxd. For example, the # character is represented
by 35 in the book, but 23 in our file. Why aren’t these the same? (Write your answer in the file
bonus-answers2.txt to hand in.)

Step 3: The C Preprocessor

Now we can begin the process of building an executable program from this source code. The exact
steps are given for you below, please follow them. Your results will be turned in, along with your
comments.

$ cpp hello.c hello.i

The file hello.i has been created with the output of the C preprocessor cpp. Only lines that begin
with # are interpreted by cpp. Look at both files using 1s -1.

The owners and permissions on both files should be the same, but hello.i should be much larger
than hello.c.

Homework Question: What are the differences between hello.c and hello.i? Put your
answers in the file answers2.txt to hand in.

Step 4: The Compiler

Now the compiler will convert C source code into assembly language instructions.
$ ccl hello.i hello.s

Take a look at hello.s now. It should look somewhat familiar, but something is different from
what you saw in your assembly language class. By default, the GNU compiler emits what we call
ATET format assembly code, which is common on UNIX systems. On Microsoft platforms it is
more common to see Intel format assembly, which is probably what you saw in previous courses.
The two formats are equivalent and neither is technically superior, but many people feel strongly
about their preference, similar to big-endian and little-endian byte ordering.

In order to get the Intel-style assembly language syntax, we’ll invoke the ccl command differently.
Let’s compare the differences.

First move!'? (a.k.a. rename) the ATé T-style assembly file hello.s to hello-att.s

$ mv hello.s hello-att.s

then compile again using the flag -masm=intel as shown below.

$ ccl hello.i hello.s -masm=intel

13The mv command is similar to the cp command in that its arguments are source followed by destination.

Lab Task: Add comments to the assembly language code by using the # character followed by
your comment. (On any single line of text, everything after the # symbol will be considered a
comment) Add a comment on the correct line for each of the following instructions:

e indicate where the space for int retval is stored

e indicate where the value is placed in retval

indicate where printf is called

o indicate where the function actually returns

Save your commented version as hello.s. You may choose which assembly language style you
prefer, Intel or AT&T, and comment that one only. Remember that you cannot use C or Java style
comments in this file (no /* */ or // comments), and that the # character denotes a single-line
comment.

Step 5: The Assembler

Now we turn the text file containing assembly instructions into a binary object file using the assem-
bler:

$ as hello.s

That should produce a file called a.out. This is a binary object file and cannot be read in a text
editor anymore, but you can examine it by running xxd a.out. You will see a few strings inside the
program. The other stuff consists of machine instructions in the form of opcodes.

Step 6: The Linker

This is one of the more obscure and complicated parts of this process. Your CS:APP book devotes
all of Chapter 7 to the topic of Linking. We do not plan on studying that chapter in detail for this
semester, but we will need to know the basics of what the linker does.

The a.out file contains the binary opcodes for running the hello program, but it does not yet have
the code for accessing external library functions. In this case, that means printf and strcpy. The
linker makes it possible to use those library functions.

Invoking the linker is almost never done by hand, but it is the way we turn that a.out file into
something that runs. (This would normally be the last of many steps gcc runs for you.) The
command line for doing this is really long, most of it necessary to make printf (actually puts)
work.

Run this command exactly as written. You may want to use the PDF version of this lab manual
to copy the text, but be careful when copying and pasting, you may need to do it a little at a time
because it must be run as one long line):

$ 1d -dynamic-linker /1ib64/1d-1inux-x86-64.s0.2 -o hello a.out
/usr/1ib/x86_64-1linux-gnu/crtl.o /usr/1ib/x86_64-linux-gnu/crti.o
/usr/1ib/x86_64-linux-gnu/crtn.o /usr/lib/gcc/x86_64-linux-gnu/7/crtbegin.o
/usr/lib/gcc/x86_64-1inux-gnu/7/crtend.o -1lc

10

Now you know why nobody wants to run the linker by hand!

At last, you should have an executable file called hello — did you have any idea that making a
“hello, world” program could be so complicated? This is what really happens when your program
gets compiled (we just don’t normally see each step along the way).

You should now be able to run the program and see the output!

$./hello
Hello world.

That’s what we should see! You’ll need to use ./ when running the program. '4

Step 7: A quick sanity check of your files

Here’s a sanity check you can use to make sure your files are what we expect them to be. You can
use the Unix command file to examine your various hello files and determine their type.

$ file =
a.out: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped
hello: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked,

interpreter /1ib64/1d-1linux-x86-64.s0.2, for GNU/Linux 2.6.26, not stripped
hello-att.s: assembler source, ASCII text

hello.c: C source, ASCII text
hello.i: C source, ASCII text
hello.s: assembler source, ASCII text

If your files have the correct types, that is a good sign.

Lab task (10 points): Make sure the following files you created while going through the steps
above are properly named: answers2.txt a.out bonus-answers2.txt hello hello.c hello.i
hello.s. You will receive points based on what you’ve written in answers2.txt, your comments
on the assembly code in hello.s, and if your hello program still works! (Please make sure it does)

Part 3 (10 points): How long does it take to copy an array?

In this part we will find a surprising result in a very simple program which will illustrate what we’ve
read in Chapter 1 of CS:APP, specifically the section Caches Matter and the figure labelled The
memory hierarchy.

We will go through this process in class, but you will also need to run this program yourself and
record your own results. Results may differ slightly but the same trends should be clear.

In the part3 directory you extracted from the initial tar file you will find two versions of a C
program which are only slightly different: array_copy_ij.c and array_copy_ji.c. Following the
steps below, you will change into that directory, view the source code (using the cat command),
and then compile the program. 19

4 This tells the shell you are running something in the current directory, represented by the dot (.)
15Tt turns out in the very simple case where we have only one file of source code, make works without a Makefile
and saves us a little bit of typing compared to running gcc.

11

$ cd part3

$ cat array_copy_ij.c
$ make array_copy_ij
$ cat array_copy_ji.c
$ make array_copy_ji

These two programs do exactly the same thing, but they only differ in that one uses a function called
copyij and the other uses copyji (the order of i and j is reversed). Here are the two functions, as

you see the only difference is that the nested for loops are in a different order:

void copyij (int src[2048][2048], int dst[2048] [2048])

{
int i, j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)
dst[i1[j] = srclil[j];
}
void copyji (int src[2048][2048], int dst[2048][2048])
{
int i, j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)
dst[i][j] = srclil[j1;
}

What do these functions do? They appear to do exactly the same thing, and in fact they produce
identical results. So why should it matter which one we use?

We want to measure how fast this program runs, so we will use the time command which should
look like this:

$ time ./array_copy_ij
Running copyij... done!

real OmO.053s
user Om0.034s
sys Om0.015s

This should print out three different times. We will pay attention to the real time. In the example
above, the program took 0.053 seconds. Run it a few more times. The results should change a little,
but be similar.

Let’s record this result to a file. The easiest way to do this is using the shell’s redirection operator,
described at the very end of Uniz Programming Tools, to write a file copyij_result.txt. Unfor-
tunately due to obscure reasons, we have to wrap the command in parenthesis and use some other
weird syntax, run it like this:

$ (time ./array_copy_ij) > copyij_result.txt 2>&1

12

Now the time is saved in copyij_result.txt. Run: cat copyij_result.txt to make sure it really
contains the results.

Now run time ./array_copy_ji as you did above. Has the result changed? It should. Record this
result in a new file using a similar command as above, instead calling this file copyji_result.txt
(note the order of i and j changed in the filename)

Based on your reading of Chapter 1 and our discussion in class, you should be able to describe
briefly why these seemingly identical functions would run faster or slower. Put your answer in
answers3.txt.

Lab task (10 points): Make sure the files copyij_result.txt copyji_result.txt and answers3.txt
are named correctly so that you get credit for completing this part.

Extra credit (1 point): Use gcc to compile both programs with the -03 flag!® and compare
the results. Does it run any faster? What is the difference between the two functions now? Why?
What’s going on here? Add your answer to bonus-answers3.txt.

Wrap-up

Now it’s time to create the introlab-handin.tar file that is to be submitted to Autolab. To create
the tar file we must first be sure that our current working directory contains the directories part1
part2 part3. Follow the steps below:

$ cd

$ cd 2467

$ 1s

partl part2 part3

$ tar cvf introlab-handin.tar partl part2 part3

The first line moves us back to our home directory. We then enter the 2467 directory with the
second line. The third line is to ensure that we are in the right location and can see our partl
part2 part3 directories. Finally, the last line creates introlab-handin.tar which we will submit
to Autolab.

To submit introlab-handin.tar, go back to where the lab handout was downloaded from Autolab.
On the right hand side, check the box that confirms that you have adhered to the academic integrity
policy then click the submit button. This will open up a file upload window where you will select
the introlab-handin.tar file you just created. Refresh the page after a few seconds and you will
see that the autograder has graded your work. You can see detailed grading information by clicking
on one of the highlighted scores for parts 1, 2, or 3. Keep in mind that if you are unhappy with
your score, there are unlimited submission attempts as long as the assignment is turned in before
the deadline.

You’ve completed Lab 0! Now on to the fun stuff...

16Note that this is the letter capital-o, not the digit 0. But it is followed by the digit 3!

13

	Introductions
	Introducing you to the lab tools
	Introducing us to the students

	Pre-requisites
	What you will hand in
	Get the initial handout files and set up a working directory
	Creating your directory
	Downloading introlab-handout.tar from autolab

	Lab manual
	Part 1 (20 points): Who are you?
	Part 2 (10 points): The lifecycle of a C program
	Step 1: The hello program
	Step 2: Examine the source code file
	Step 3: The C Preprocessor
	Step 4: The Compiler
	Step 5: The Assembler
	Step 6: The Linker
	Step 7: A quick sanity check of your files

	Part 3 (10 points): How long does it take to copy an array?
	Wrap-up

