THE UNIVERSITY of
NEW ORLEANS

DEPARTMENT OF
COMPUTER SCIENCE

CSCI 2467, Fall 2019
Class Activity: graphing processes with signals

1 Using fork() with signals

Consider the program on the next page, which contains a main() function and a signal handler
called sigint_handler (The C source for this program is also available from the 2467 schedule
page as usual, called forkSig.c.)

1.1 Commenting

Because this program is more complex than our last activity, you need to read and annotate the
source code before making a process graph. On the lines that begin with //, answer the question
given in the comments. (Comments using the /* */ notation are already complete, and can help
you understand the code.)

1.2 Graphing

Use the space below to draw a process graph for this program. Make sure that fork() calls are
shown as a new branch in the graph. The kil1() calls should be shown sending a signal to another
process by using an arrow. The wait () or waitpid() calls should also use an arrow to show them
reaping the child process. $H9iht _hand{er exit (D

L

X rRrt (O

stetas

\
[
Sigint_hand ler ! exi+(
! /T pring{ O o
! l Y
| . [P .
| I Sigint_hhandler | \'-" ot
X (_ 1
‘ | im0 ! -
B ! I ! ‘ :!l °
. <
))Z_‘ (| ! ™ -
é \—rl \ | l %) i
2 G! | | ' IS
~ ' i ') rB
Z A S [| [R\
o> IO o 2
| Q
sl B T T
T 0|00 | e s £ s 'y 1 E
- - . I\ N\ C e £
a—\. Q\ Qo'o:\' {\bQo | z'_" :'_' | é—— J :\E_ :/ :_' N o)
wméih fork() £ork(y (Drl(() KILpd @ S D Tl (pld @] maiNT> waitpid (pidCelg.)] wartpid (PIdC 4.

kil LF}A(\] SN wartpid Lr,}m],g{,.)
1

void sigint__handler (int sig)

{

int

printf("Process %d received signal %d\n", getpid(), sig);
exit (1); /% set exit status 1 and end process x/

main ()
printf("\nWelcome to forkSig, a signal handling example!\n\n");

int N = 3;
pid_t pid[N];
int child_ status;

I’ej;'f-ﬁff'g sij{h'l'-hﬁhc,{@” Qs ‘H’)e, (,‘jhﬁl
// What does this signal() function call do? h”fhdje/r o’ the

signal (SIGINT, sigint_handler); glalNT <i9h9 |
/* Create N processes and store their pids in the pid[] =/
for (int i = 0; i <N .i-l--'i-) { in child process, [’iJCi] will be
// What's going into pid[i] here? 5 _ Y/
pid[i] = fork (); ih Pafent Procec ol ciq il Le
if (pid[i] = 0) { Pid of child (noniefo)
/* If you're the child, go into an Infinite Loop */
while (1);
}
}

for (int i = 0; 1 < N; i++) {

/+* signal each of the N processes referenced in the pid[] */
printf("Sending SIGINT to process %d\n", pid[i]);

// What is happening with this kill () function call? qren ?fo(c,f_

kill (pid[i], SIGINT): Send S €14 INT sighal o child procese
}oonild process teceives ¢)qINT, ¢cql)¢ handler (breaky(

for (int i = 0; i < N; i++) { out 64 nLdinite I«of)
/* Reap each of the child processes x/
pid_t wpid = waitpid(pid[i], &child status, 0);
// What is the relationship between WIFEXITED and WEXITSTATUS?
if (WIFEXITED(child status)) —Which <ignhal >
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child__status));) .
else Twhat was dargument to i lds
printf("Child %d terminated abnormally\n", wpid); i)(\"f"()
i)rintf("\nEXiting...\n"); A]) 7
exit (0);

