CSCI2467: Systems Programming Concepts

Pointers

Course Instructors: Course Assistants:
Matthew Toups Saroj Duwal
Caitlin Boyce David McDonald
Spring 2020

&

THE UNIVERSITY of
NEW ORLEANS

DEPARTMENT OF
COMPUTER SCIENCE

C Code . .
Pointers in C

int x;
int *p;

X = 99; //holds a value
p = &x; //holds an address of a value

Operator Function
& “address of”

Source: wchapman.net

http://wchapman.net/files/Pointers%20in%20C.pdf

C Code . .
Pointers in C

int x;
int *p;

x = 99; //holds a value

p = &X; //holds an address of a value
Memory
99 M1 XX | XX | XX [XX
Wod X
M1 M2 99
P p
&x &p *X

Source: wchapman.net

http://wchapman.net/files/Pointers%20in%20C.pdf

C Code . .
Pointers in C

int x;
int *p;

X = 99; //holds a value

p = &x; //holds an address of a value

Memory
99 M1 XX | XX | XX | XX

Wod]
M1 M2 99
*p p
&X &p *X
Segmentation Fault
(hopefully)

http://wchapman.net/files/Pointers%20in%20C.pdf

C pointer syntax

Operator Function
* pointer / dereference
& “address of”

int x = 1, y = 2, z[10];
int *ip; /* 4p is a pointer to int */

ip = &x; /* 4p mow points to zT */
y = *ip; /* y 4is now 1 */
ip = 0; / z is now 0 */

ip = &z [0]; /* 4ip now points to z[0] */

Source: K&R Chapter 5

Pointers illustrated

a

g

Imagine memory as a long block of boxes that store data. Each
box is labeled with an address. A pointer is a variable that holds
a particular address. An array is a group of contiguous boxes that

can be accessed by their index values.
€X§

L —T T T T | int *p, *q, x;
20 | 24 | 28 [32 | 36 | 40 | 44

Q
I\ 7)
ki} Y

Here we declare p and g as pointers that will hold the addresses of
int variables, and x as an ordinary int variable.

Pointers illustrated

int afl4];

This line defines an array that can store four int values.
Now, a points to the first index of this array.

(None of the variables have been assigned values yet, so they contain
“garbage” — whatever had been stored in these blocks of memory before)

Pointers illustrated

(int*) malloc(sizeof (int));
&§X;

Q
o

Line 1 requests 4 bytes (enough for one int) of memory using
malloc(), and stores the location of that memory in p (cast to
int * to indicate the type of the data being pointed to).

Line 2 looks up the address of x and stores it in q.

Source: CS lllustrated

http://csillustrated.berkeley.edu/PDFs/handouts/pointers-and-arrays-handout.pdf

Pointers illustrated

*p = 1;
*q = 2;
*a = 3;

We can access the data referenced by a pointer by dereferencing
it using the *. Dereferencing looks inside the memory (box) at the
location (address) stored by the pointer.

Here we put values 1, 2, and 3 into boxes pointed to by p, g, and a.

Source: CS lllustrated

http://csillustrated.berkeley.edu/PDFs/handouts/pointers-and-arrays-handout.pdf

Pointers illustrated

printf ("*p:%u, p:%u, &p:%u\n", *p, p, &p):;
printf ("*g:%u, g:%u, &g:%u\n", *q, g, &q);
printf ("*a:%u, a:%u, &a:%u\n", *a, a, &a);

\O

BEERE, p:40, SphpEs
R, g:20, &oeEEs
BEEIENS a: 24, &akge

Note: this illustration assumes 32-bit (4-byte) pointers

Source: CS lllustrated

http://csillustrated.berkeley.edu/PDFs/handouts/pointers-and-arrays-handout.pdf

C pointer syntax

Operator Function
* pointer / dereference
& “address of”

int x = 1, y = 2, z[10];
int *ip; /* 4p is a pointer to int */

ip = &x; /* 4p mow points to zT */
y = *ip; /* y 4is now 1 */
ip = 0; / z is now 0 */

ip = &z [0]; /* 4ip now points to z[0] */

Source: K&R Chapter 5

C pointer syntax

C uses "“call-by-value” semantics for function calls

void swap(int x, int y) int a=123,b=456;

{
int temp; swap(a, b);
temp = x; This function won't swap
x = v; a and b, only copies of the
y = temp; values.

}

Source: K&R Section 5.2

Addressing example

void swap (long *xp, swap:
long *yp) mov rax, QWORD PTR [rdil
{ mov rdx, QWORD PTR [rsil

mov QWORD PTR [rdil], rdx

long t0 = *xp; mov QWORD PTR [rsil], rax

long t1 = *yp;

*xp = til; (or in the other “flavor” asm)
*YP S t0; swap:
¥ movq (%rdi), %rax
Called with: movqg (%rsi), %rdx

movq Y%rdx, (%rdi)
movq %rax, (%rsi)
ret

long a=123,b=456;

swap (&a, &b);

Understanding swap()

Memory

void swap Registers

(long *xp, long *yp) _/
{ [#rai| o

long t0 = *xp; - “

long tl = *yp; %rsi

o o oM

yp = t0;
}

chﬁg|ster l/;lue mov rax, QWORD PTR [rdi]
i " mov rdx, QANORD PTR [rsi]
rax t0 mov. QNORD PTR [rdi], rdx
rdx tl mov QWORD PTR [i] s

Understanding swap()

. Memory

Registers Address
123 | 0x120

0x120 3] ox
0x118

%$rsi 0x100

ox110
ox108
srax| | 456 | 0x100

swap:
mov rax, QWORD PTR [rdil
mov rdx, QWORD PTR [rsil
mov QWORD PTR [rdi], rdx
mov QWORD PTR [rsi], rax

Understanding swap()

. Memory
Registers Address
123 | 0x120
0x120 3] ox
0x118
%$rsi 0x100
[srsi| ox100] oxito
[srax| 123 0x108
srax] | 456 | 0x100

swap:
mov rax, QWORD PTR [rdil
mov rdx, QWORD PTR [rsil
mov QWORD PTR [rdi], rdx
mov QWORD PTR [rsi], rax

Understanding swap()

. Memory

Registers Address
123 | 0x120

0x120 3] ox
0x118

%$rsi 0x100

ox110
M 123 0x108
$rdx 456 456 | 0x100

swap:
mo rax, QWORD PTR [rdil]
mov rdx, QWORD PTR [rsi]
QWORD PTR [rdil], rdx
QWORD PTR [rsi], rax

<

mo

<

mo

<

Understanding swap()

. Memory
Registers Address

456 | 0x120
0x118

0x110

456 [0x100

swap :
mov rax, QWORD PTR [rdil
mov rdx, QWORD PTR [rsil
mov QWORD PTR [rdi], rdx
mov QWORD PTR [rsil], rax

Understanding swap()

. Memory
Registers Address

456 | 0x120
0x118

0x110

456 123 | 0x100

swap :
mov rax, QWORD PTR [rdil
mov rdx, QWORD PTR [rsil
mov QWORD PTR [rdil], rdx
mov QWORD PTR [rsi], rax

