
Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

CSCI2467: Systems Programming Concepts
Midterm review

Course Instructors:

Matthew Toups
Caitlin Boyce

Course Assistants:

Saroj Duwal
David McDonald

Spring 2020

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Scores so far

Your updated datalab scores to date are posted in AutoLab
(see gradebook)

Many folks lost points on datalab due to insufficient
explanations in comments

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

AutoLab gradebook examples

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

AutoLab gradebook examples

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Upcoming exam

Midterm exam: Wednesday February 19

Location: Math 118

- Given during class time, 50 minutes, closed book etc

- We will provide a sheet of notes and helpful values,

you will only bring something to write with.

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Exam material overview

Chapter 2 (2.1-2.4)

- see practice problems (in later slides)

- see activity handouts

- be able to explain datalab solutions

Chapter 3 (3.1-3.6)

- will present problems in Intel assembly format

- see practice problems (in later slides)

- see activity handout problems

- be able to identify things you have seen in bomblab

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Exam rough breakdown

Roughly...

45% bitwise operations, binary two’s complement
representations

20% datalab puzzle comment/explanation

35% bomblab, reverse engineering, reading assembly, filling in
blanks in C code

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Class updates

1 Midterm exam info

2 Midterm format

3 Chapter 2: Data
operators
int
Conversion between signed & unsigned

4 Chapter 3: Machine-level programs
Arithmetic
Control
Activities

5 Puzzles to practice on

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Midterm format

Fill in a table with missing values

- small examples (less than 32-bit)

- using binary two’s complement representation of ints

- using binary operations, masking, arithmetic (w/ overflow)

- is an expression true for all values?

Datalab:

- Given some C code, fill in a blank or table of values

- Given a C function, fill in comments explaining how it is solved

Bomblab:

- Fill in missing C source code (based on given disassembly)

- Given multiple C functions, circle the correct one

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

operators

Class updates

1 Midterm exam info

2 Midterm format

3 Chapter 2: Data
operators
int
Conversion between signed & unsigned

4 Chapter 3: Machine-level programs

5 Puzzles to practice on

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

operators

Boolean Algebra

Algebraic representation of logic, developed by Boole in 1850s
Encodes “True” as 1 and “False” as 0

Binary AND:
A&B = 1 when
both A = 1 and B = 1

& 0 1

0 0 0
1 0 1

Binary NOT (complement):
∼ A = 1 when A = 0

∼ 1

0 1
1 0

Binary OR:
A|B = 1 when
either A = 1 or B = 1

| 0 1

0 0 1
1 1 1

Exclusive-Or (XOR):
A ∧ B = 1 when either A = 1
or B = 1 but not both

∧ 0 1

0 0 1
1 1 0

Based on Figure 2.7 in CS:APP3e

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

operators

Logical operators

Don’t confuse bitwise and logical operators! They look similar but
are very different.

&&, || , !
- View 0 as “False”
- View anything non-zero as “True”
- Always return 0 or 1
- Early termination!

Examples:

!0x41⇒ 0x00

!0x00⇒ 0x01
!!0x41⇒ 0x01
0x69 && 0x55 ⇒ 0x01
0x69 || 0x55 ⇒ 0x01
a && 5/a (will never divide by zero)
p && *p (avoids null pointer access)

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

operators

Logical operators

Don’t confuse bitwise and logical operators! They look similar but
are very different.

&&, || , !
- View 0 as “False”
- View anything non-zero as “True”
- Always return 0 or 1
- Early termination!

Examples:

!0x41⇒ 0x00
!0x00⇒ 0x01

!!0x41⇒ 0x01
0x69 && 0x55 ⇒ 0x01
0x69 || 0x55 ⇒ 0x01
a && 5/a (will never divide by zero)
p && *p (avoids null pointer access)

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

operators

Logical operators

Don’t confuse bitwise and logical operators! They look similar but
are very different.

&&, || , !
- View 0 as “False”
- View anything non-zero as “True”
- Always return 0 or 1
- Early termination!

Examples:

!0x41⇒ 0x00
!0x00⇒ 0x01
!!0x41⇒ 0x01

0x69 && 0x55 ⇒ 0x01
0x69 || 0x55 ⇒ 0x01
a && 5/a (will never divide by zero)
p && *p (avoids null pointer access)

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

operators

Logical operators

Don’t confuse bitwise and logical operators! They look similar but
are very different.

&&, || , !
- View 0 as “False”
- View anything non-zero as “True”
- Always return 0 or 1
- Early termination!

Examples:

!0x41⇒ 0x00
!0x00⇒ 0x01
!!0x41⇒ 0x01
0x69 && 0x55 ⇒ 0x01

0x69 || 0x55 ⇒ 0x01
a && 5/a (will never divide by zero)
p && *p (avoids null pointer access)

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

operators

Logical operators

Don’t confuse bitwise and logical operators! They look similar but
are very different.

&&, || , !
- View 0 as “False”
- View anything non-zero as “True”
- Always return 0 or 1
- Early termination!

Examples:

!0x41⇒ 0x00
!0x00⇒ 0x01
!!0x41⇒ 0x01
0x69 && 0x55 ⇒ 0x01
0x69 || 0x55 ⇒ 0x01

a && 5/a (will never divide by zero)
p && *p (avoids null pointer access)

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

operators

Logical operators

Don’t confuse bitwise and logical operators! They look similar but
are very different.

&&, || , !
- View 0 as “False”
- View anything non-zero as “True”
- Always return 0 or 1
- Early termination!

Examples:

!0x41⇒ 0x00
!0x00⇒ 0x01
!!0x41⇒ 0x01
0x69 && 0x55 ⇒ 0x01
0x69 || 0x55 ⇒ 0x01
a && 5/a (will never divide by zero)

p && *p (avoids null pointer access)

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

operators

Logical operators

Don’t confuse bitwise and logical operators! They look similar but
are very different.

&&, || , !
- View 0 as “False”
- View anything non-zero as “True”
- Always return 0 or 1
- Early termination!

Examples:

!0x41⇒ 0x00
!0x00⇒ 0x01
!!0x41⇒ 0x01
0x69 && 0x55 ⇒ 0x01
0x69 || 0x55 ⇒ 0x01
a && 5/a (will never divide by zero)
p && *p (avoids null pointer access)

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

operators

Shift operators

Left Shift: x << y

- Shift bitvector x left y positions

(Throw away extra bits on left)

- Fill with 0s on right

Right Shift: x >> y

- Shift bitvector x right y positions

(Throw away extra bits on right)

? Logical shift: fill with 0s on left

? Arithmetic shift: Replicate most
significant bit on left

Undefined: Shift < 0 or ≥ word
size

Examples
Argument x 01100010

<< 3 00010000
Log. >> 2 00011000

Arith. >> 2 00011000

Argument x 10100010
<< 3 00010000

Log. >> 2 00101000
Arith. >> 2 11101000

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

int

two’s complement encoding example

short int x= 2467: 00001001 10100011
short int y= -2467: 11110110 01011101

Weight 2467 -2467

1 1 1 1 1
2 1 2 0 0
4 0 0 1 4
8 0 0 1 8

16 0 0 1 16
32 1 32 0 0
64 0 0 1 64

128 1 128 0 0

256 1 256 0 0
512 0 0 1 512

1024 0 0 1 1024
2048 1 2048 0 0
4096 0 0 1 4096
8192 0 0 1 8192

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum: 2467 -2467

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

int

Numeric Ranges

Unsigned values

- UMin = 0

000 ... 0

- UMax = 2w − 1

111 ... 1

Two’s complement values

- TMin = −2w−1

100...0

- TMax = 2w−1 − 1

011...1
Values for w = 16 (short int)
Decimal Hex Binary

UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Conversion between signed & unsigned

Mapping Between Signed & Unsigned
Carnegie Mellon

22 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec;ve,	
 Third	
 Edi;on	

T2U	

T2B	
 B2U	

Two’s	
 Complement	
 Unsigned	

Maintain	
 Same	
 Bit	
 PaTern	

x	

 ux	

X	

Mapping	
 Between	
 Signed	
 &	
 Unsigned	

U2T	

U2B	
 B2T	

Two’s	
 Complement	
 Unsigned	

Maintain	
 Same	
 Bit	
 PaTern	

ux	

 x	

X	

¢  Mappings	
 between	
 unsigned	
 and	
 two’s	
 complement	
 numbers:	

	
 Keep	
 bit	
 representa6ons	
 and	
 reinterpret	

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Conversion between signed & unsigned

Mapping Signed ↔ Unsigned
Carnegie Mellon

23 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec;ve,	
 Third	
 Edi;on	

Mapping	
 Signed	
 ↔	
 Unsigned	

Signed	

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned	

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits	

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T	

T2U	

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Conversion between signed & unsigned

Mapping Signed ↔ Unsigned
Carnegie Mellon

24 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec;ve,	
 Third	
 Edi;on	

Mapping	
 Signed	
 ↔	
 Unsigned	

Signed	

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned	

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits	

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=	

+/-­‐	
 16	

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Conversion between signed & unsigned

Conversion Visualized
Carnegie Mellon

26 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec;ve,	
 Third	
 Edi;on	

0	

TMax	

TMin	

–1	

–2	

0	

UMax	

UMax	
 –	
 1	

TMax	

TMax	
 	
 +	
 1	

2’s	
 Complement	

Range	

Unsigned	

Range	

Conversion	
 Visualized	

¢  2’s	
 Comp.	
 →	
 Unsigned	

§  Ordering	
 Inversion	

§  Nega;ve	
 →	
 Big	
 Posi;ve	

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Conversion between signed & unsigned

Practice

CSCI 2467, Fall 2020
Class Activity: Two’s complement, bitwise and logical operators

Wednesday, January 29, 2020

2467 Instructors: M. Toups, C. Boyce
staff@cs.uno.edu

1 Introduction

In this activity you will practice working with binary numbers, bitwise operators, and logical
operators. This activity is based in part on material developed by Professor Saturnino Garcia of
the University of San Diego and is used with permission.

2 Review of Negative Integers

1. In a two’s complement system, what is the leftmost bit in a non-negative number? What
about the leftmost bit in a negative number?

2. Complete the following table to indicate the most positive (i.e. largest) and most negative
(i.e. smallest) number that can be represented with a given number of bits when using two’s
complement representation.

Bits Most positive Most negative

1 0 -1

2 1 -2

3

4

3. Use your answer from the previous question to find an expression that gives the most positive
number that can be represented by a N-bit two’s complement number. Hint: This will be
related to a power of two in some way.

4. Use your answer from the previous question to find an expression that gives the most negative
number that can be represented by a N-bit two’s complement number. Hint: This will be
related to a power of two in some way.

1

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Conversion between signed & unsigned

More practice

We strongly recommend you check out these practice problems
from the text! Textbook problems:

2.1 through 2.4

2.6 through 2.9

2.12 through 2.16

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Arithmetic

Class updates

1 Midterm exam info

2 Midterm format

3 Chapter 2: Data

4 Chapter 3: Machine-level programs
Arithmetic
Control
Activities

5 Puzzles to practice on

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Arithmetic

Arithemetic operations
Two operand instructions

Pay attention to order of operands

No distinction between signed & unsigned. (why not?)

Format Operands Computation

add dest,src dest = dest + src
sub dest,src dest = dest - src
imul dest,src dest = dest * src
sal dest,src dest = dest << src (also shl)
sar dest,src dest = dest >> src (arithmetic)
shr dest,src dest = dest >> src (logical)
xor dest,src dest = dest ∧ src
and dest,src dest = dest & src
or dest,src dest = dest — src

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Arithmetic

Arithemetic operations
One operand instructions

Format Operand Computation

inc dest dest = dest + 1
dec dest dest = dest - 1
neg dest dest = – dest
not dest dest = ˜dest

See CSAPP3e for more on these operations.

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Arithmetic

Arithmetic expression example

long arith

(long x,long y,long z)

{

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

return rval;

}

arith:

lea rax , [rdi+rsi]

add rax , rdx

lea rcx , [rsi+rsi *2]

sal rcx , 4

lea rcx , [rdi +4+ rcx]

imul rax , rcx

ret

Interesting instructions:

lea: address computation

sal : shift left

imul: multiplication

(only used once!)

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Arithmetic

Arithmetic expression example

long arith

(long x,long y,long z)

{

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

return rval;

}

arith:

lea rax , [rdi+rsi] # t1

add rax , rdx # t2

lea rcx , [rsi+rsi *2]

sal rcx , 4 # t4

lea rcx , [rdi +4+ rcx]# t5

imul rax , rcx # rval

ret

Register Use

rdi argument x
rsi argument y
rdx argument z
rax t1, t2, rval
rcx t4, t5

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Control

Conditional jumps

11	

Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

Carnegie Mellon	

Jumping	

¢  jX	
 Instruc�ons	

§  Jump	
 to	
 different	
 part	
 of	
 code	
 depending	
 on	
 condi�on	
 codes	

jX	
 Condi�on	
 Descrip�on	

jmp 1 Uncondi�onal	

je ZF Equal	
 /	
 Zero	

jne ~ZF Not	
 Equal	
 /	
 Not	
 Zero	

js SF Nega�ve	

jns ~SF Nonnega�ve	

jg ~(SF^OF)&~ZF Greater	
 (Signed)	

jge ~(SF^OF) Greater	
 or	
 Equal	
 (Signed)	

jl (SF^OF) Less	
 (Signed)	

jle (SF^OF)|ZF Less	
 or	
 Equal	
 (Signed)	

ja ~CF&~ZF Above	
 (unsigned)	

jb CF Below	
 (unsigned)	

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Control

Conditional branch example

long absdiff

(long x, long y)

{

long result;

if (x > y)

result = x-y;

else

result = y-x;

return result;

}

Compiled with:
gcc −Og −S absdiff.c −masm=intel

absdiff:

cmp rdi , rsi

jle .L2

mov rax , rdi

sub rax , rsi

ret

.L2: # x <= y

mov rax , rsi

sub rax , rdi

ret

Register Use

rdi argument x
rsi argument y
rax return value

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Activities

CSCI 2467, Spring 2020
Class Activity: Understanding disassembled code

Friday, February 7

CSCI 2467 Staff: staff@2467.cs.uno.edu

1 Introduction

In this activity you will get practice reading assembly language code which has been disassembled –
taken from an existing, compiled program. This “reverse-engineering” technique is especially useful
for folks in the computer security field who are studying malware and software vulnerabilities. It is
also an excellent way for anyone to gain a deeper understanding of how their programs are actually
compiled and executed. (The questions are from CS:APP3e by Bryant and O’Hallaron, chapter 3.)

Below is a table which should be helpful. This is the “calling convention” for x86-64 on Linux,
which determines which function arguments go into which registers when a function is called.
If a function has only one argument, that argument will be stored in rdi . If there are two, then
the first goes into rdi and the second into rsi, and so on for functions with more arguments.

x86-64 calling convention
Function argument register
1st rdi
2nd rsi
3rd rdx
4th rcx
5th r8
6th r9
> 6 (stored on stack)

1

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Activities 3 Machine-level control flow

3. Consider the following assembly code:

fun1 :
cmp rdi , r s i
j g e . L3
mov rax , r d i
r e t

. L3 :
mov rax , r s i
r e t

What C function could have been compiled to generate these instructions? (There is more
than one correct answer.)

Fill in the three blanks below with valid C code (using variable names a and b):

long fun1 (long a , long b) {

i f (________________________________)

return ________________ ;

e l s e
re turn ________________ ;

}

4

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Activities

More practice

CS:APP3e textbook practice problems:

3.18

3.21

3.24

3.26

3.28

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

Activities

Get to work!

We have the rest of the class to work on:

- midterm prep: ask questions

- review textbook problems

- review activities

- review datalab/bomblab

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

ux ≥ 0

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

ux ≥ 0
x&7 == 7 ⇒ (x << 30) < 0

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

ux ≥ 0
x&7 == 7 ⇒ (x << 30) < 0

ux > −1

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

ux ≥ 0
x&7 == 7 ⇒ (x << 30) < 0

ux > −1
x > y ⇒ −x < −y

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

ux ≥ 0
x&7 == 7 ⇒ (x << 30) < 0

ux > −1
x > y ⇒ −x < −y

x ∗ x ≥ 0

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

ux ≥ 0
x&7 == 7 ⇒ (x << 30) < 0

ux > −1
x > y ⇒ −x < −y

x ∗ x ≥ 0
x > 0 && y > 0 ⇒ x + y > 0

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

ux ≥ 0
x&7 == 7 ⇒ (x << 30) < 0

ux > −1
x > y ⇒ −x < −y

x ∗ x ≥ 0
x > 0 && y > 0 ⇒ x + y > 0
x ≥ 0 ⇒ −x ≤ 0

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

ux ≥ 0
x&7 == 7 ⇒ (x << 30) < 0

ux > −1
x > y ⇒ −x < −y

x ∗ x ≥ 0
x > 0 && y > 0 ⇒ x + y > 0
x ≥ 0 ⇒ −x ≤ 0
x ≤ 0 ⇒ −x ≥ 0

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

ux ≥ 0
x&7 == 7 ⇒ (x << 30) < 0

ux > −1
x > y ⇒ −x < −y

x ∗ x ≥ 0
x > 0 && y > 0 ⇒ x + y > 0
x ≥ 0 ⇒ −x ≤ 0
x ≤ 0 ⇒ −x ≥ 0

(x | − x) >> 31 == −1

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

ux ≥ 0
x&7 == 7 ⇒ (x << 30) < 0

ux > −1
x > y ⇒ −x < −y

x ∗ x ≥ 0
x > 0 && y > 0 ⇒ x + y > 0
x ≥ 0 ⇒ −x ≤ 0
x ≤ 0 ⇒ −x ≥ 0

(x | − x) >> 31 == −1
ux >> 3 == ux/8

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

ux ≥ 0
x&7 == 7 ⇒ (x << 30) < 0

ux > −1
x > y ⇒ −x < −y

x ∗ x ≥ 0
x > 0 && y > 0 ⇒ x + y > 0
x ≥ 0 ⇒ −x ≤ 0
x ≤ 0 ⇒ −x ≥ 0

(x | − x) >> 31 == −1
ux >> 3 == ux/8
x >> 3 == x/8

Class updates Midterm exam info Midterm format Chapter 2: Data Chapter 3: Machine-level programs Puzzles to practice on

C int Puzzles!

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

If... true for all values, or false?
x < 0 ⇒ (x ∗ 2) < 0

ux ≥ 0
x&7 == 7 ⇒ (x << 30) < 0

ux > −1
x > y ⇒ −x < −y

x ∗ x ≥ 0
x > 0 && y > 0 ⇒ x + y > 0
x ≥ 0 ⇒ −x ≤ 0
x ≤ 0 ⇒ −x ≥ 0

(x | − x) >> 31 == −1
ux >> 3 == ux/8
x >> 3 == x/8
x & (x − 1) ! = 0

	Class updates
	Midterm exam info
	Midterm format
	Chapter 2: Data
	operators
	int
	Conversion between signed & unsigned

	Chapter 3: Machine-level programs
	Arithmetic
	Control
	Activities

	Puzzles to practice on

