

CSCI 2467, Spring 2020 Class Activity: graphing and predicting a forking program Friday, March 6, 2020

1 Forecasting a fork()

Consider the program below, which contains a main() function which calls another function called doit(). The C source for this program is also available from the 2467 schedule page, activity link.

```
void doit() {
   fork();
   printf("hello\n");
   return;
}
int main() {
   doit();
   printf("hello\n");
   exit(0);
}
```

1.1 Process graph

In the space above, draw a process graph, similar to the ones seen in the text and in the lecture slides. Each invocation of doit(), fork(), and printf() should be a node on the graph.

1.2 Output

How many lines of output (i.e. how many instances of "hello") does this program produce?

1.3 Change order of main()

Test what happens if you **modify the original doit.c program** to create doit1.c: In main(), if you put the printf() statement *before* doit(), how does this change the output? Draw a new process graph below and then state how many lines will be printed:

1.4 Add another fork() to doit()

Test what happens if you **modify the original doit.c program** to create doit2.c: In doit(), if you add a second call to fork() at the beginning of the function, how does this change the output?

Draw a new process graph below and then state how many lines will be printed:

1.5 Replace return with exit(0) in doit()

Test what happens if you modify the original doit.c program to create doit3.c: In doit(), if you replace return with exit(0), how does this change the output?

Draw a new process graph below and then state how many lines will be printed:

2 Check your answers

Now that you have 3 graphs and 3 answers for the problem above, make a new directory and then create 3 files with the C source for these three examples: doit1.c, doit2.c, doit3.c.

After you create each file and make changes to the source code, you can compile each by running make doit1 and so on. (This is simply a shortcut to running the gcc compiler)

Run each program and compare to your process graph and prediction. How did the output of those programs compare to what you predicted?