THE UNIVERSITY of
NEW ORLEANS

DEPARTMENT OF
COMPUTER SCIENCE

CSCI 2467, Spring 2020
Class Activity: More overflow practice

The program for this activity can be found in /home/CSCI2467/1labs/bonustarget/btarget.

Level 1

The goal of this activity is to input a string that causes the program to call win(0x15213), and
thereby win a cookie.

1. Where is long before stored on the stack? What about long after?
2. How many bytes can Gets() copy before overwriting something?

3. If the user types "12345678\n", what will the resulting stack look like? (Fill in the stack
diagram on the back.) What will the corresponding value read from %rdx be?

4. How can you use GDB to check if your buffer overflow worked as intended?

Level 2

For a little bit more of a challenge: Can you figure out how to call win(0x18213) for two cookies?

1. Which lines of assembly correspond to win(0x15213) and win(0x18213)7

Level 3

If you finished the other activities early, see if you can manage to call win(0x18613)!

1. Note the suspiciously named function gadget1. Does it obey calling conventions by preserving
the stack pointer when it returns? What value will it place into %rdi?



4006bb: sub rsp,0x38
4006b9: mov QWORD PTR [rsp+0x28],0xb4
4006¢0:
4006c2: mov QWORD PTR [rsp+0x8],0xaf
40069 : void solve(void) {
4006¢cb: lea rdi ,[rsp+0x10] long before = 0xb4;
4006d0: call 400731 <Gets> char buf[16];
4006d5: mov rdx ,QWORD PTR [rsp+0x28] long after = Oxaf;
4006da: movabs rax,0x3331323531
4006el : Gets(buf);
4006e4: cmp rdx ,rax
4006e7: jne 4006f3 <solve+0x3e> if (before = 0x3331323531)
4006€9: mov edi ,0x15213 win (0x15213);
4006ee: call 40064d <win>
4006 f3 : mov rdx ,QWORD PTR [rsp+0x8] if (after = 0x3331323831)
40068 : movabs rax,0x3331323831 win (0x18213);
4006 ff :
400702: cmp rdx ,rax
400705: jne 400711 <solve+0x5c> }
400707: mov edi ,0x18213
40070c: call 40064d <win>
400711: add rsp,0x38
400715: ret
Table 1: Code

7 6 5 4 3 2 1 0 Notes
0x602058 00 00 00 00 00 00 00 00 Return Addres
0x602050
0x602048
0x602040
0x602038
0x602030
0x602028
0x602020

Table 2: Stack Diagram




