
CSCI 2467, Spring 2020
Class Activity: Understanding disassembled code

Friday, February 7

CSCI 2467 Staff: staff@2467.cs.uno.edu

1 Introduction

In this activity you will get practice reading assembly language code which has been disassembled –
taken from an existing, compiled program. This “reverse-engineering” technique is especially useful
for folks in the computer security field who are studying malware and software vulnerabilities. It is
also an excellent way for anyone to gain a deeper understanding of how their programs are actually
compiled and executed. (The questions are from CS:APP3e by Bryant and O’Hallaron, chapter 3.)

Below is a table which should be helpful. This is the “calling convention” for x86-64 on Linux,
which determines which function arguments go into which registers when a function is called.
If a function has only one argument, that argument will be stored in rdi . If there are two, then
the first goes into rdi and the second into rsi, and so on for functions with more arguments.

x86-64 calling convention
Function argument register
1st rdi
2nd rsi
3rd rdx
4th rcx
5th r8
6th r9
> 6 (stored on stack)

1

2 Machine-level arithmetic and logical operations

1. In the following C function arith2(), four expressions have been replaced with blanks:1

long a r i t h2 (long x , long y , long z)
{

long t1 = _____________________;

long t2 = _____________________;

long t3 = _____________________;

long t4 = _____________________;

return t4 ;
}

When compiled using gcc -S, this function generates assembly instructions. Below are the
instructions implementing the blank expressions: (Intel-style assembly)

a r i t h2 :
or rd i , r s i
sa r rd i , 3
not rd i
mov rax , rdx
sub rax , r d i
r e t

Based on this assembly code, fill in the missing portions of the C code in the blanks above.
(Note: you may only use the symbolic variables x, y, z, t1, t2, t3, t4 in your expressions
above — do not use register names.)

1You can check your answer to this problem against the solution for Problem 3.10 on page 329 of CS:APP3e.

2

2. The lea instruction stands for “load effective address” and is designed to compute the memory
address of an entry in an array or structure. However, lea can also be used by a compiler to
compute arithmetic operations (addition and multiplication) in a single instruction, so it is
often found in unexpected places.

Consider the following code in which we have omitted the expression being computed:2

long s c a l e 2 (long x , long y , long z) {

long t = ___________________________

return t ;

}

Compiling the actual function with gcc (using gcc -S scale2.c -masm=intel -Og) yields
the following assembly code:

s c a l e 2 :
l e a rax , [r d i+rd i ∗4]
l e a rax , [rax+r s i ∗2]
l e a rax , [rax+rdx ∗8]
r e t

Based on this assembly code, fill in the missing portion of the C function in the blank above.
(Note: you may only use the symbolic variables x, y, and z in your expressions above — do
not use register names.)

2You can check your answer to this problem against the solution for Problem 3.7 on page 328 of CS:APP3e.

3

3 Machine-level control flow

3. Consider the following assembly code:

fun1 :
cmp rdi , r s i
j g e . L3
mov rax , r d i
r e t

. L3 :
mov rax , r s i
r e t

What C function could have been compiled to generate these instructions? (There is more
than one correct answer.)

Fill in the three blanks below with valid C code (using variable names a and b):

long fun1 (long a , long b) {

i f (________________________________)

return ________________ ;

e l s e
re turn ________________ ;

}

4

	Introduction
	Machine-level arithmetic and logical operations
	Machine-level control flow

