CSCI2467: Systems Programming Concepts

Slideset 3: Integer values and arithmetic (CS:APP 2.2, 2.3)

Course Instructors: Course Assistants:
Matthew Toups Saroj Duwal
Caitlin Boyce David McDonald
Spring 2020
THE UNIVERSITY of

o S G g e | By sy g

CSCI Help Desk

SﬂilWﬂl'e nevelopmem lleln DESK

Get AHEAD with free tutoring!

e Gct AHEAD with free tutoring! ol
Java, C, Assembly in Math 319

Datalab tips

@ Check correctness with . /btest
@ Test for illegal operators with ./dlc bits.c
e Get final score with ./driver.pl

(all of this is on page 3 of writeup; keep it close by)

Course notes

@ Only submit bits.c to Autolab (not a tar file)

@ You can use the Autolab website, or the autolab command-line interface, to
submit

@ Can re-submit, most recent submission is counted

@ Scoreboard! points / ops

Course notes

datalab scoreboard

Scoreboard

Datalab scoreboard!

TOTAL TOTAL BITOR | BITAND BITXOR ISNOTEQUAL COPYLSB SPECBITS
RANK NICKNAME VERSION TIME

POINTS OPS OPS OPS OPS OPS OPS OPS
2019-02-02
1 m. toups 17 10 32 1 4 7 3 2 3
12:32:09
2019-02-01
2 Battousai 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
21:50:26

Course notes

Course notes
Signed and Unsigned ints

e Bytes in memory & security

e Conversion, casting

O Magic

© Integer arithmetic

Course notes

How we got here

Binary Representations
for Integers

X

\—/

Signed and Unsigned ints

http://csillustrated.berkeley.edu

In The early days oT computing, designers made
computers express numbers using unsigned binary.

Signed and Unsigned ints e

0800000

To include negative numbers, designers came up with
sign magnitude.

Signed and Unsigned ints
0080000

Then designers created ones’ complement.

Signed and Unsigned ints
feYele] Yolole)

Finally, designers developed two's complement.

Finally, designers developed two's complement.

Signed and Unsigned ints
0000800

http://csillustrated.berkeley.edu

{
,/ /‘H\ /‘A " 4

Comparing Integer Representations
The Thrilling Conclusion!

-

\eAr/\Z'Voef 23: '::):)r(r]\r;;::g‘?o(:: E2$ s Negation? One Zero? Zero = Continuous? Monotonically
see that scoreboard! 0000 0000 Increasing?
Unsigned v v g v
= Sign Magnitude \, N g
One's Complement \, \, \,
Two's Complement \, \, \, \,
Bias Ng Ng Ng Ng
-

Well, well! Tt appears we have a three-way tie among Unsigned, Two's Complement,
and Bias! We can certainly give each of our winners a prize, though!

Signed and Unsigned ints
0000080

CS __ .berkeley.edu

¥
P
G

Signed and Unsigned ints

000000e

Encoding Integer values

Unsigned Signed
w—1 w—2
B2U(X) =Y x -2 B2T(X) = —xy_1 2714 > 52
—0 i—0
I Change: Sign bit! ’
w—2 .
B2T(X) = —xy1-2" "+) x-2
i=0

Change: Sign bit!

e Example using short int in C (2 bytes):
Decimal | Hex Binary

2467 | 09A3 | 00001001 10100011

-2467 | F65D | 11110110 01011101
@ This system of numbering is called Two’s complement
@ Sign bit indicates sign
- 0 for non-negative

Signed and Unsigned ints
©00000

Unsigned Integers

\®)
@
Il

SR
—_ D
Il I

— N A oo

N
<)
Il

- O
L o—
4 o
+ w
=+ &

5 67 8 910111213141516

[0001]
[0101]
[1011]
[1111]

Signed and Unsigned ints

(o] lelelele]

Signed Integers

<
23=8
22=4
21=2
20=1
—8-7-6-5-4-3-2-1

012345678 910111213141516

(011 (e D

+16 >

1111 (s I R D D

+16 >

Signed and Unsigned ints
008000

Back to the 2's complement encoding example

short int x= 2467: 00001001 10100011
short int y= -2467: 11110110 01011101

Weight | 2467 -2467
1 1 1 1 1
2 1 2 0 0
4 0 0 1 4
8 0 0 1 8
16 0 0 1 16
32 1 32 0 0
64 0 0 1 64
128 1 128 0 0
256 1 256 0 0
512 0 0 1 512
1024 0 0 1 1024
2048 1 2048 0 0
4096 0 0 1 4096
8192 0 0 1 8192
16384 0 0 1 16384
-32768 0 0 1 -32768
Sum: 2467 -2467

Signed and Unsigned ints
000e00

Numeric Ranges

@ Unsigned values @ Two's complement values
- UMin =0 - TMin = —2"1
000 ... 0 100...0
- UMax =2" —1 - TMax =2""1 -1
111 ... 1 011...1
Decimal Hex Binary

UMax 65535 | FF FF | 11111111 11111111
TMax 32767 | 7F FF | 01111111 11111111
TMin -32768 | 80 00 | 10000000 00000000
-1 -1 | FF FF | 11111111 11111111
0 0| 0000 | 00000000 00000000

Signed and Unsigned ints
000080

Values for w = 16 (short int)

16-bit sheep counter

loae 2.

4.

- 1,306... 1307 ..

BapA

5D
/ﬁ—m

AN A A

=

L0 B2767...-32,7%8...

25

o =32,767...-32,766 ...

> B

Source: xkcd.com

0O0000e

Signed and Unsigned ints

https://xkcd.com/571/

Values for Different Word Sizes

W (bits)
8 16 32 64
UMax | 255 | 65535 | 4,294,967,295 | 18,446,744,073,709,551,615
TMax | 127 | 32767 | 2,147,483,647 | 9,223,372,036,854,775,807
TMin | -128 | -32768 | -2,147,483,648 | -9,223,372,036,854,775,3808

@ Observations: @ C Programming
| TMin| = TMax + 1 #include <limits.h>
(Asymmetric range) Defines constants:
o UMax =2 TMax + 1 INT_MAX
INT_MIN
LONG_MAX
ULONG_MAX

Signed and Unsigned ints
@00

Data Types in C

Size in Bytes
C Data Type Typical 32-bit Typical 64-bit x86-64
char 1 1 1
short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double - - 10/16
pointer 4 8 8

Signed and Unsigned ints
000

Unsigned & Signed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 =7
1010 10 —6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 -2
1111 15 -1

m Equivalence
= Same encodings for nonnegative
values
m Uniqueness

= Every bit pattern represents
unique integer value

® Each representable integer has
unique bit encoding
m => Can Invert Mappings
= U2B(x) = B2UY(x)
= Bit pattern for unsigned
integer
= T2B(x) = B2T(x)
= Bit pattern for two’s comp
integer

Signed and Unsigned ints
ooe

3 Course notes
Signed and Unsigned ints
@ History
@ Two's complement e Bytes in memory & security
@ Ranges
@ Why does this matter?
Conversion, casting

O Magic

© Integer arithmetic

Signed and Unsigned ints
[Ye)

Real-world problems!

Why does any of this matter? Rocket science
(Fatal bug in Patriot missile, Ariane-5 explosion)

What's 77.1 x 850? Don't ask Excel 2007
65,535 = the Number of the Beast

26 Sep 2007 at 17:45, Dan Goodin ® O

A Microsoft manager has confirmed the existence of a serious bug that could give prog
number crunchers a failing grade when relying on the latest version of Excel to do basi

The flaw presents itself when multiplying two numbers whose product equals 65,535. F
favorite calculator and multiply 850 by 77.1. Through the magic of zeros and ones, you
answer of 65,535. Those using the Excel 2007, however, will be told the total is 100,00
similarly fails when multiplying 11 other sets of numbers, including 5.1*12850, 10.2*64:
20.4*3212.5, according to this blog post from Microsoft manager David Gainer.

i e He stressed that the bug, which was introduced when Microsoft made changes to the |
Signed and Unsigned ints

oe

° Course notes
© Signed and Unsigned ints

e Bytes in memory & security

e Conversion, casting

@ Conversion

@ Mixing signed and unsigned

@ Possible sources of error

@ Preserving the sign bit e Magic
© Integer arithmetic

Conversion, casting

Mapping Between Signed & Unsigned

Two’s Complement 20 Unsigned
x —[rze -l w
Maintain Same Bit Pattern
Unsigned u2T Two’s Complement
ux —>7>——~ x

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Conversion, casting
©0000000

Unsigned — Signed (U2T)

2w
2w—1 - _|_2w71
Unsigned
9 1 Two’ s
0 0 complement
1 _2w—1

Conversion, casting

onversion,
0@000000

Signed — unsigned (T2U)

— :ZVV
+2w-1 T 2»! Unsigned
Two’s 1
complement 0 0

_2w71

Conversion, casting

onversion,
[e]e] lelelele]e]

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 [0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 F2ul— 5
0110 6 6
0111 7 —{u2tl— 7
1000 -8 8
1001 =7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 =2 14
1111 =i 15

Conversion, casting
00 000

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 4 <_> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 » +/- 16» 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Conversion, casting

[e]e]e} [e]e]

Relation between Signed & Unsigned

Two’s Complement 120 Unsigned
X 128 X B2U ux

Maintain Same Bit Pattern

w—1 0
ux [+ eee J+[+[+]

X [l eee +[+[+]

I

Large negative weight
becomes
Large positive weight

Conversion, casting
00000800

Conversion Visualized

m 2’s Comp. — Unsigned
= Ordering Inversion UMax

= Negative — Big Positive UMax -1

TMax +1 | Unsigned

[T™Max TMax Range
2’s Complement 0 0
Range) -
-2
L TMin

Conversion, casting
00000080

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers
® Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy

(unsigned) ty;
® |mplicit casting also occurs via assignments and procedure calls

tx = ux;

uy = ty;

Conversion, casting
0000000e

Casting surprises!

Expression Evaluation:

@ If there is a mix of unsigned and signed in single expression, signed values

implicitly cast to unsigned

@ includes comparison operations > < == <= >=

@ When W=32: TMIN= -2,147,483,648 TMAX= 2,147,483,647
Constantl Relation Constant2 Evaluation
0 ou
0 == ou unsigned
-1 0
-1 < 0 signed
-1 ou
-1 > ou unsigned
2147483647 -2147483647-1
2147483647 > -2147483647-1 signed
2147483647V -2147483647-1
2147483647U < -2147483647-1 unsigned

Conversion, casting
Yol

Casting Signed <> Unsigned: Basic rules

Bit pattern is maintained

... but reinterpreted

Can have unexpected effects: adding or subtracting 2"
Expression containing signed and unsigned int:

int is cast to unsigned ! (implicitly)

Conversion, casting
oe

Pitfalls of unsigned

Don't use unsigned without understanding implications:
It is easy to make mistakes

unsigned 1i;
for (i = cnt-2; i >= 0; i--)
ali]l += ali+1];

Conversion, casting
@000

Pitfalls of unsigned

Don't use unsigned without understanding implications:
It is easy to make mistakes!

unsigned 1i;
for (i = cnt-2; i >= 0; i--)
ali]l += ali+1];

Can be very subtle:

#define DELTA sizeof (int)
int 1i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

Conversion, casting
0000

Counting down with unsigned

A better way to use loop index:

unsigned 1i;
for (i = cnt-2; i < cnt; i--)
ali]l += ali+1];

C Standard guarantees that unsigned addition will behave like modular arithmetic:
0—-1— UMax

Modular arithmetic is useful in many situations.

Conversion, casting
0000

Why even use unsigned then?

@ Do use when performing modular arithmetic
(multiprecision arithmetic)
@ Do use when using bits to represent sets
Logical right shift — no sign extension
Java?

no unsigned! Everything is signed.
introduces >>> for logical shift (>> is arithmetic shift)

Conversion, casting
0o0e

Sign extension

m Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value
= Rule:
= Make k copies of sign bit:
= X'=x

e —|

w-1 7000 Xw-10 X109 X210+ X

k copies of MSB w
x I T eee TTT]

X' [T TTTTTT e TTT171
k w

Conversion, casting

[o]

Sign extension example

short int x = 2467;
int ix = (int) x;
short int y = -2467;
int iy = (int) vy;
Decimal Hex Binary
X 2467 09 A3 00001001 10100011
ix 2467 | 00 00 09 A3 | 00000000 00000000 00001001 10100011
y -2467 F6 5D 11110110 01011101
iy -2467 | FF FF F6 5D | 11111111 11111111 11110110 01011101

Converting from smaller to larger integer data type:
C automatically performs sign extension

Conversion, casting

(o] J

3 Course notes @ Addition

Signed and Unsigned ints @ Multiplication
@ Summary

e Bytes in memory & security

e Conversion, casting

O Magic

© Integer arithmetic

Integer arithmetic

Unsigned addition

Operands: w bits w L1 ... 111

+v LIIT eee TTT]
True Sum: w+1 bits u+v [OTT] — TTT]
Discard Carry: wbits ~ UAdd (u,v) [T 11T __eee TTT]

m Standard Addition Function
" |gnores carry output

m Implements Modular Arithmetic

s = UAdd,(u,v) = u+v mod 2"

Integer arithmetic
@00000

Visualizing (Mathematical) Integer addition

Integer Addition Add,(u, v)

= 4-bit integers u, v Integer Addition

= Compute true sum
Add,(u, v)

= Values increase linearly
withuandv

® Forms planar surface

CS:APP3e Figure 2.21: With a 4-bit word size, the sum could require 5 bits.

Integer arithmetic
000000

Visualizing Unsigned addition

Wraps Around Overflow
" |f true sum > 2%

= At most once

True Sum

w+l
2 Overflow

2V _,I

Modular Sum

CS:APP3e Figure 2.23: With a 4-bit word size, addition is performed modulo 16.

Integer arithmetic
008000

Two's Complement Addition

Operands: w bits u LLLT eee J]T1]

+ p LITT eee JT1]1]
True Sum: w+1 bits u+v OOTTT — T
Discard Carry: w bits TAdd,, (v ,v) L1 | see 111

m TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Will give s ==

Integer arithmetic
000000

TAdd Overflow

Functionality
" True sum requires w+1
bits
= Drop off MSB

® Treat remaining bits as
2’s comp. integer

0111..

0100...

0000...

1011..

1000...

True Sum
w_1 T
PosOver
TAdd Result
2wl T 011..1
0T 000...0
-2w-1 T 100...0
—w 1 NegOver

Integer arithmetic

[e]e]ele] lo]

Visualizing Two's Complement Addition

NegOver

Values \

= 4-bit two’s comp.

= Range from -8 to +7

Wraps Around
= |f sumz=2w1
= Becomes negative
= At most once
= |f sum < —2w!
= Becomes positive
= At most once

u 6 ’ PosOver

Integer arithmetic
00000@

Multiplication

Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned
But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—1)2 = 22w—2wl 41
= Two’s complement min (negative): Up to 2w-1 bits
= Resultrange: x *y > (-2w-1)*¥(2w1-1) = —22w=24 2wl
= Two’s complement max (positive): Up to 2w bits, but only for (TMin,,)?
= Resultrange: x * y < (-2w1)2 = 22w=2
So, maintaining exact results...
= would need to keep expanding word size with each product computed
" js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

Integer arithmetic
©0000

Unsigned Multiplication in C

y LIl eee TJJ]T]

Operands: w bits
* oy LIIT eee JTTT]
True Product: 2*w bitsut * v 11 | see HEEEEN e e 111
UMult, (v ,v) CITTT eee TTT]

Discard w bits: w bits

m Standard Multiplication Function
= |gnores high order w bits

m Implements Modular Arithmetic
UMult,(u,v)= u -v mod2¥

Integer arithmetic
0@000

Signed Multiplication in C

u LLI1 e L1 1]

Operands: w bits
* 0 LI s L1 1]
True Product: 2*w bits#t v |1 | | vee HEEEEN see 111
TMult, (u ,v) [T11 s L1111

Discard w bits: w bits

m Standard Multiplication Function
= Ignores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

= |ower bits are the same

Integer arithmetic
00800

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k
" Both signed and unsigned k
y LITT eee TJTT]

* ok [0] eee Jo[1]0[e« Jol0]

Operands: w bits

True Product: w+k bits 42X [T T 1T eee T T T Jol eee Jol0]
Discard k bits: w bits UMult, (.29 [“eee T T T JoI eee JoJo]
TMult, (u , 2)
m Examples
" u<< 3 = u * 8
" (u<< 5) - (u<< 3)== u * 24

® Most machines shift and add faster than multiply
= Compiler generates this code automatically

Integer arithmetic
00000

Unsigned Power-of-2 Divide with Shift

= Quotient of Unsigned by Power of 2
= u > kgives [u / 2¢]
= Uses logical shift

k
_ u L[Lleeef[JeeelT] Binary Point
Operands: | 2k [o] e JoJ1Jo] ««« Jolol
Division: /20 B BT T T T TT]
Result: | u/2k] [0 e Jofol T T eee T]
Division | Computed Hex Binary
X 2467 2467 | 09 A3 | 00001001 10100011
x >>1 1233.5 1233 | 04 D1 | 00000100 11010001
x >> 4 154.1875 154 | 00 9A | 00000000 10011010
x >> 8 | 9.63671875 9| 0009 | 00000000 00001001

Integer arithmetic
0000e

Summary of Arithmetic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

® Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2¥
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

® Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

Integer arithmetic
[Ye)

C int Puzzles!

int x

unsigned ux
unsigned uy

foo ();
int y = bar();

X)
Y

If...
x <0

x&7 ==
x>y
x>0&& y>0

x>0
x<0

true for all values, or false?

= (xx2)<0

ux >0

= (x <<30)<0
ux > —1

= —x< —y

xxx>0

=>x+y>0

= —x<0

= —x2>0

(x| —x)>>31==-1

ux >> 3 == ux/8
x>>3==x/8
x&(x—1) 1= 0

Integer arithmetic
oe

Course notes
Signed and Unsigned ints

e Bytes in memory & security
@ Addressing memory
@ Ordering multi-byte values

e Conversion, casting @ Strings
@ Security implications
@ Common vulnerabilities involving
signed/unsigned
O Magic

© Integer arithmetic

Bytes in memory & security

Byte-oriented memory organization

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
® An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
" Think of a process as a program being executed
® So, a program can clobber its own data, but not that of others

Bytes in memory & security
[Ye)

Word-oriented memory organization

m Addresses Specify Byte
Locations
= Address of first byte in word

= Addresses of successive words differ
by 4 (32-bit) or 8 (64-bit)

Bytes in memory & security
oe

32-bit

64-bit

Bytes
Words Words y

Addr
0000

Addr

0000
Addr
0004
Addr
0008 Addr

0008
Addr
0012

Addr.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

Byte ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
® Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address

= Little Endian: x86, ARM processors running Android, iOS, and
Windows

= Least significant byte has lowest address

Bytes in memory & security
[Ye)

Byte ordering example

m Example
® Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
| [Joilesfas]er | | |

Little Endian 0x100 0x101 0x102 0x103
| | | 67 | a5 [23] o1 | | |

Bytes in memory & security
oe

Representing strings

char S[6] = "18213";
m StringsinC
= Represented by array of characters
® Each character encoded in ASCII format 1A32 Sun
= Standard 7-bit encoding of character set 31 31
= Character “0” has code 0x30 38 38
— Digit i has code 0x30+i 32 32
= String should be null-terminated 31 31
= Final character =0 33 33
m Compatibility 00 00

= Byte ordering not an issue

Bytes in memory & security
°

Code security example

Similar to FreeBSD's implementation of getpeername ()!

/% Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf [KSIZE];

/*Copy at most mazlen bytes from kernel region to user buffer*/
int copy_from_kernel(void *user_dest, int maxlen) {
/% Byte count len ts mintmum of buffer stize and mazlen */
int len = KSIZE < maxlen 7?7 KSIZE : maxlen;
memcpy (user_dest, kbuf, len);
return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE];
copy_from_kernel (mybuf, MSIZE);
printf (, mybuf);

'See CVE-2002-0973 for more info on this real-world security vulnerability.

Bytes in memory & security
['Ye)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0973

Malicious usage

/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);

/% Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf [KSIZE];

/*Copy at most mazlen bytes from kernel region to user buffer*/
int copy_from_kernel(void *user_dest, int maxlen) {
/% Byte count len ts mintmum of buffer stize and mazlen */
int len = KSIZE < maxlen 7 KSIZE : maxlen;
memcpy (user_dest, kbuf, len);
return 1len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE];
copy_from_kernel (mybuf, -MSIZE);
printf (, mybuf);

}

Bytes in memory & security

Course notes
Signed and Unsigned ints

e Bytes in memory & security

e Conversion, casting

O Magic

© Integer arithmetic @ XOR is magic!

XOR is magic

XOR (°) has magic powers!

temp = a;
a = b;
b = temp;

Magic
[Yolole}

XOR is magic

Swap a and b without a temporary variable!

a =a ~ b;
b =a " b,
a = a ~ b;

Magic
000

XOR is magic

How the magic works: (see page 54 in CS:APP text)

X = X -~ y ; // T == A, y == B
y =

)

X y ; // & == A "~ B, y == B
// y == (A -~ B) ~ B ==A4 " (B "~ B)
// == 4 " 0
x=x "y //z ==4 B, y == 4
// x == (A -~ B) ~ A
// == (A4 ~ 4) " B
/7 == 0 "~ B
// == B

XOR magic is crucial

If we have 3 “data” bits and 1 “parity” bit...

RAID 4
S S

~_ N~ e

AL 4 A2 g A3 4 KA
Bl 1 N B2 4 KN B3 4 N B
SULSELI [NGLC- B NGLCCEP B N

D1 | D2 (B34 (B

_J_J\-‘____/\-____;/

Disk O Disk 1 Disk 2 Disk 3

Magic
000e

	Course notes
	Signed and Unsigned ints
	History
	Two's complement
	Ranges
	Why does this matter?

	Conversion, casting
	Conversion
	Mixing signed and unsigned
	Possible sources of error
	Preserving the sign bit

	Integer arithmetic
	Addition
	Multiplication
	Summary

	Bytes in memory & security
	Addressing memory
	Ordering multi-byte values
	Strings
	Security implications
	Common vulnerabilities involving signed/unsigned

	Magic
	XOR is magic!

